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The functions are of parametric form: 
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Software Note: 

 

All of the graphs and videos in this e-book were produced with Pacific Tech’s  ‘Graphing 

Calculator,’ which for the most part is an inexpensive and excellent piece of software that I can 

completely recommend. The simple user interface is its strong point.  

 

The difficulties arise in three places: (1) The older version videos produce AVI files which seem 

to come out upside down - this has been fixed in later versions; 2) The graphs are sometimes 

incomplete at cusps, certain vertices, and so on; and (3) At certain discontinuities, the software 

produces unnecessary “straight lines” as it attempts to “connect the dots” - these will be 

pointed out where needed. 

 

The video files for the animations are hosted on YouTube and will play automatically when the 

links are clicked. 

 

Please feel free to send along anything that might warrant attention. 

 

Contact Note: 

 

In an endeavor of this size and scope, there will likely be no shortage of errors. Additionally, any 

innovative notations offered can best be thought of as suggestions that seemed to make sense 

at the time but likely can be improved upon. Corrections and thoughtful suggestions for 

improvement are invited - please feel free to email me. 

 

 

Navigation Note: 

 

The List of Animations, the Table of Contents, and cross-references are ‘active’ allowing for easy 

navigation. Just click on any of them to go anywhere. If you wish to return after jumping 

anywhere, just click  ALT + LEFT ARROW. It functions like a ‘back button’ on a browser. 

 

The index is not active, so the best approach there is to type the page number into the current 

page box (at the top of Adobe Acrobat) and hit ENTER to go to that page. To go back type ALT + 

LEFT ARROW. 

 

http://www.pacifict.com/
http://gregehmka.com/contact
http://gregehmka.com/contact
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Note to Mac users: You may need to manually add a ‘back button’ to your tool bar. To do this 

go to the VIEW drop-down menu. Then, click CUSTOMIZE TOOL BAR. Then, drag the FORWARD 

and BACK ARROWS from the menu to the tool bar for one-click forward and back navigation 

within this e-book.  
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1.0 Imaginary Numbers and Human Experience  
 

Generally speaking imaginary numbers are often thought to be, at worst, an annoyance, at 

times, a reluctant necessity and, at best, strange but of undeniable usefulness.  At the same 

time there is a striving to know just what exactly an imaginary number is.  A short survey of 

various on-line forums shows interesting discussions wherein one writer typically asks about an 

intuitive understanding of the imaginary unit,  i, and other writers attempt an answer.  For 

example, here, or here.  Or if the forum is somewhat more science oriented, the discussion 

centers around visual/physical representations of imaginary numbers.  For example, here. 

The source of these types of discussions stems from the wide agreement as to the algebraic 

definition of the imaginary unit i and the perceived, by some, insufficiency as to the geometric 

definition of i. 

 

The algebraic understanding is, of course, this definition: 

      

 

along with comments such as this one from Leibniz and similar others: 

 

"From the irrationals are born the impossible or imaginary quantities whose nature is very 

strange but whose usefulness is not to be despised."[*] 

The current geometric understanding of i is as units along the vertical axis of the complex plane 

along with the intuitive sense of a rotation.  These are described by the Argand Diagram [*]  [**] 

and extended via complex numbers to a circle by Euler’s formula: 

 

                

 

about which there is a similar duality as to wide agreement on the algebraic meaning and an 

insufficient understanding as to the geometric meaning.  This duality is typified by comments 

such as this one by Benjamin Pierce: 

“Gentlemen, that is surely true, it is absolutely paradoxical; we cannot understand it,               

and we don't know what it means. But we have proved it,                                                               

and therefore we know it must be the truth.” 

 

and more recently this one by Scott E. Brodie[*]: 

http://math.stackexchange.com/questions/199676/what-are-imaginary-numbers
http://uk.answers.yahoo.com/question/index?qid=20121229090312AAbhgOu
http://www.scienceforums.net/topic/72145-questions-about-visualphysical-representations-of-imaginary-numbers/
http://books.google.co.id/books?id=PvfpyjM0PBYC&pg=PA145&lpg=PA145&dq=Leibniz:+%22From+the+irrationals+are+born+the+impossible+or+imaginary+quantities+whose+nature+is+very+strange+but+whose+usefulness+is+not+to+be+despised.%22&source=bl&ots=e6yQvXUoX5&sig=
http://mathworld.wolfram.com/ArgandDiagram.html
http://en.wikipedia.org/wiki/Complex_plane
http://www.cut-the-knot.org/arithmetic/algebra/Scott.shtml
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“An intuitive understanding of Euler's formula for the complex exponential, 

remains elusive, notwithstanding hundreds of years of contemplation.” 

 

3Di coordinates offers a significant, and as will be seen, a very satisfying advance in the 

geometric understanding of imaginary and complex numbers.  One that implies a direct 

connection to human experience.   As suggested in the introduction to this article, imaginary 

numbers can now be seen to have these two additional definitions: 

In three dimensions, imaginary numbers are measurements in the ‘depth’ direction.  Real 

numbers are measurements on the horizontal and vertical directions. Mathematically, depth is 

imaginary. 

In three dimensions think of an i rotation as going from the horizontal or vertical to the front 

rather than from the horizontal to the vertical as in the two dimensional complex plane. 

In order to establish this direct connection to human experience it is useful to note that 

imaginary and complex numbers have historically not been seen to have a direct connection to 

human experience.  The philosophical concerns relative to imaginary numbers no longer 

generate much discussion but the direct connection to human experience is still insufficient. 

This is seen in Leibniz’s above quote and in these two comments by Nobel Laureate Eugene 

Wigner: 

 The complex numbers provide a particularly striking example for the foregoing. Certainly, 

nothing in our experience suggests the introduction of these quantities.  [*] 

Surely to the unpreoccupied mind, complex numbers are far from natural or simple and they 

cannot be suggested by physical observations. [*] 

 3Di coordinates seeks to establish this direct connection to human experience beginning with 

some simple visualizations: 

As we stand and peer out at life we “know” that we “see” a three dimensional reality.  But, if 

we are rigorous about what we are actually seeing then we don’t actually see anything except a 

two dimensional visual screen with an ever so slight sense of depth due to binocular vision. 

People who have only one eye functioning are acutely aware of the predominance of this two 

dimensional screen. 

http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
http://www.dartmouth.edu/~matc/MathDrama/reading/Wigner.html
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For example, if you walk down the street and stand squarely in front of a building you don’t 

actually see anything other than the front of the building.  What we refer to as the facade  is a 

two-dimensional view which is even more pronounced if you close one eye. 

If we don’t move, and therefore, continue looking only at the front of the building through one 

eye, we can draw a two-dimensional coordinate system in our mind’s eye upon which the front 

of the building could be sketched.  Designers and architects do this all the time. They are 

sketching what one would actually see. 

Mathematically, the exact point at which the eye would look, without moving, would be the 

origin.  And, we could draw a horizontal x-axis and a vertical y-axis from that origin point. 

Now, if you happened to have had your eyes closed while someone else guided you to this 

exact position, standing squarely in front of the building, then how would you “know” that you 

were looking at a whole building, rather than just the backdrop of a theater set or just the 

facade of a Hollywood set? 

The answer, depending on how well the film or theater set was constructed, is that you would 

NOT know.  The “rest” of the building, or whatever is behind the set, would have to be 

imagined. 

In another example, a friend once told me of an acquaintance of his who only had one eye and 

who liked to play tennis.  As the story goes the one-eyed tennis player had to train himself to 

observe the growing size of the tennis ball as it moved toward him to know the proper distance 

at which he should hit the ball for the return. 

An even more striking example of this can be found in flight training for pilots.  If a pilot is flying 

under VFR (visual flight rules as opposed to IFR, instrument flight rules), as another aircraft is 

observed, it is critical to determine whether or not there is a relative motion between the two 

aircraft.  Here is one quote of the principle that can be found in many places: 

if another aircraft appears to have no relative motion, but is increasing in size, it is likely to be 

on a collision course with you [*] 

 Quite likely some interesting thought experiments may be conducted as to under what 

conditions it is possible to know whether or not a tennis ball is of constant size and approaching 

or at a constant distance and growing in size! 

We can also ask ourselves; “What is the nature of the distance that appears to be unobservable 

to the pilot between the two aircraft that are on a collision course?”  Extending this inquiry just 

https://www.faasafety.gov/files/notices/2013/Jun/FAA_collision_avoidance_info.pdf
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a bit further; “How does the introduction of radar or a laser beam, which can and does 

determine the distance precisely, differ in terms of measurement from the type of 

measurement possible in the horizontal and vertical directions which, traditionally, uses 

"measuring sticks"?   At the very least, a radar or laser beam requires time and a measuring 

stick does not. 

Transferring this general inquiry directly to mathematics we might ask; “Does the real x, y plane 

assume a one-eyed view? Can the common human experience of binocular vision, or in certain 

cases the absence of it, be suggestive of imaginary distance? 

If it’s true that we must imagine what goes on behind a building’s facade in the z or depth 

direction of perspective or imagine the distance to an object, moving or not, that is directly in 

front of us then possibly imaginary numbers can be combined with the real plane to form a new 

three-dimensional coordinate system more closely representative of what we actually observe. 

In other words; To the degree that mathematics assists us in understanding what we perceive 

as we look out at life, we must acknowledge the fact that what we perceive includes both seen 

and imagined components. Consequently both real and imaginary values must be included in 

the mathematical representation of it. 

As a final example, special relativity theory with its concept of length contraction in the 

direction of travel or parallel to it [*]  also is suggestive of a different quality to the third or 

depth dimension. 

Although quite interesting in and of itself, how much of the foregoing discussion is factual or 

truthful is not what we wish to determine here.   The introduction of 3Di coordinates only takes 

the very small step of declaring that the third or depth dimension is sufficiently different from 

the horizontal and vertical directions to warrant a slightly different mathematical treatment. 

 And that slightly different treatment is only to define the third dimension as being imaginary 

analogous to the y-axis being defined imaginary in the complex plane. 

As it turns out this small step of defining the third dimension as imaginary brings wonderful 

new results. 

 

  

http://en.wikipedia.org/wiki/Length_contraction
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1.1 General Characteristics 

 

The Three Dimensional Coordinate System for Complex Numbers is called ‘3Di’ which is an 

acronym for ‘Third Dimension Imaginary’ and is based on the following definitions and 

characteristics: 

 

1) In three dimensions, imaginary numbers are measurements in the ‘depth’ direction.  

Real numbers are measurements in the horizontal and vertical directions. 

Mathematically, depth is imaginary. 

2) In three dimensions think of an   rotation as going from the horizontal or vertical to 

the front, rather than from the horizontal to the vertical. 

3) A ‘dimensional approach’ is taken to functions.  Meaning, functions are categorized 

by the number of dimensions the particular function has.  By ‘dimension’ what is 

meant is essentially a variable.   

4) One of the primary points of view is that imaginary dimensions are as equally 

important, and as equally present, as real dimensions. 

5) The primary purpose of the e-book is to present a wonderful array of the many new 

functions made possible by ‘3Di’ and to graph these functions. 

 

To make it a little clearer, with this model we could say that the usual real plane might be 

designated as ‘2D,’ the complex plane as ‘2Di,’ the usual real space as 3D,and this system as 

3Di.      
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1.2 Associated Dimensions and Functions 

 

Functions may be categorized by the number of dimensions i.e. variables.  For this 

categorization, the presence and number of i’s in the designation denotes the number of 

imaginary dimensions or imaginary variables.  Continuing from 2D, 2Di, 3D, 3Di we may have for 

example, 4Di, 4Dii, 5Dii, 6Diii and so on. 

 

The functions that are graphed, therefore, associate the number of variables - including both 

input and output - to the number of dimensions and give rise to the following useful 

categorization of types of functions: 

 

3Di              helixes, polynomials, conics, elliptic and    

      hyperelliptic curves 

  

4Di               function morphing 

 

4Dii                helix morphing 

 

 4Dii                complex natural logs  

 

 4Dii                complex imaginary logs  

 

 4Dii                closed and open surfaces   

 

 5Dii 

         

         

          

   circular surfaces 

 

 6Dii 

           

           

            
   closed surface objects in motion 

 

With five and six variables,    becomes exclusively an output variable, whereas, in lower 

dimensions it is usually both an input and an output dimension. 
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1.3 Example in 4Dii 

 

As can be seen in the Table of Contents, this eBook organizes all of the many and varied 

functions by their number of variables consistent with the table above.  Here is an example of 

4Dii which generates a new interpretation of the exponential/natural log functions: 

 

           

               

 

In 4Dii these form a simple geometry of a rotation of the usual exponential graph. This way it 

can be seen that the ‘infinite branches’ of the log function, which show up in two or three 

dimensions, can be interpreted geometrically as rotations of the three-dimensional exponential 

graph, with    specifying the amount of rotation. In this way, the multi-valued nature of the 

natural log function is simply the state of rotation of the three-dimensional exponential graph. 

 

3Di coordinates allow the complex exponential function and its inverse, the complex natural 

logarithmic function, to be displayed as a  four-dimensional function with a wonderful 

geometric interpretation.   

 

 
Animation 1 ’Rotating Exponential Graph’  

http://youtu.be/cX6xsBa944I
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Any point on the graph, at any state of rotation, is uniquely specified by the four coordinates 

            as follows: 

 

     is the real horizontal axis coordinate. 

     is the real vertical axis coordinate. 

      is the imaginary depth axis coordinate. 

      is the imaginary rotation of the exponential graph. 

 

This interpretation also shows why the natural log of zero, or of              , is not possible 

since any point with these coordinates is not on the graph.  Either         may be zero, but not 

both.   

 

Additionally, changing the input from ‘line-angle input’,         to ‘complex regional input’, 

         

 

           

               

 

 

forms a surface by, graphing a complete revolution at once where any point on the surface is 

specified by the four coordinates: 
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See section 11.23  The Four Coordinate Complex Exp/Log Surface 
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As the eBook progresses, moving from one category of functions to the next, when the number 

of dimensions/variables becomes greater than four (which may be thought of as the four 

observable dimensions), we can formulate a notion of embedded dimensions that play more of 

a parametric role.   

 

For example, in 6Dii: 

 

6Dii 

           

           

            
 

 

there would be the usual three spatial dimensions,         plus the usual motion or animation 

dimension indicated by ‘t.’  These four would be the observable dimensions.  And then two 

more dimension indicated by, in this case,      which would be the embedded dimensions 

playing a parametric role. 

 

The point in this modeling, again, is that dimensions would be characterized by the number of 

variables, rather than by any intrinsic properties of a space or an object.  See 13.1  Observable 

and Embedded Dimensions for more discussion. 
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2.0  3Di Means: “Third Dimension Imaginary” 
 

2.1  Constructing the Coordinate System 

 

As we look at the building’s façade with our eye on the origin, we can make what we see 

correspond to the real plane. Accordingly, we could then specify functions on this real plane of 

the type: 

 

       

 

The horizontal axis takes on the values of  , and the vertical axis takes on the values of     And, 

in accordance with engineering design (as well as everyday usage), we will call this the ‘front 

view.’  Further, since it is a real  plane we will call it the ‘front real plane’ or FRP.   In this 

modeling we can designate it as 2D.  

 

Behind the building’s façade is, of course, the third-dimension, and we give that dimension the 

variable   - as the depth axis.  We can designate this as 3D. 

 

So, we have thus far: 

 

                      

                    

                 

 

This is different than that which is used in some other applications, particularly surfaces, where 

  is often used for the vertical direction. 

 

Mathematically, the problem is how to specify functions going on “behind the façade” since we 

cannot see them.  Conveniently, mathematics has another tool called the “complex plane” 

which uses imaginary numbers.   

 

This plane uses the following: 
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This plane is usually called  , but we will designate it as 2Di.  Here is a clue:   

 

If it’s true that we must imagine what goes on behind the façade in the   or depth direction of 

perspective, then possibly imaginary numbers can be combined with the real plane to form a 

new three-dimensional coordinate system. 

 

So then, the problem would be how to combine the real plane with the complex plane?   

 

In the complex plane the real values are in the horizontal direction.  This is the same as the real 

plane.  So far so good. And, in the complex plane, the imaginary numbers are in the vertical 

direction, whereas we want them in the depth direction. So, if we take the complex plane, as 

we look at it, and then lay it down flat in front of us - effectively rotating it, top-end forward, 

about the horizontal axis - then the imaginary numbers will be in the forward-backward, or 

depth direction , rather than the vertical. Then, by changing the axis name for the complex 

plane from    to   , for the depth direction in our new three-dimensional system, we have the 

new coordinates and we can designate this as 3Di. 

 

This would be the same as taking our initial x, y, z space and multiplying the                   in 

the depth direction.  

 

This combined real and imaginary plane construction allows us to write functions of the type: 

 

          

 

in which: 

i. The real input   will be graphed on the horizontal axis. 

ii. The real output   will be graphed on the vertical axis. 

iii. And, the imaginary output    will be graphed on the “depth” axis. 

 

So, in step-by-step progression from 2D to 2Di to 3D to 3Di, we have made the transition from 

two dimensions to three and combined the real and complex planes - with our eye now at the 

origin of three axes instead of two. 

 

But wait a minute. Doesn’t the equation we just wrote normally mean only curves on the real 

plane since:         

 

Well, the answer is: it depends. If      only generates real numbers like these functions: 
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Then yes,     would always equal zero , and so      would equal zero, and - very important - our 

function would only exist on the front real plane (FRP.)  But take, for example, a function like: 

 

        

 

Then     would always equal zero rather than     And, we can ask the question: Where would 

this straight  line lie?   

 

Since   (the vertical axis) is always zero, this line lies entirely on the        plane, which is the 

horizontal and depth plane.  This plane cannot be seen by our eye at the origin of the front view 

since it extends directly forward and backward of our eye.  We will call this plane the ‘top view.’  

And since it is an imaginary plane we will call it the ‘top imaginary plane’ or the TIP.   

 

In order to see this plane we would have to look down on it.  And if we did, then the straight 

line would look like: 

 
top view  'TIP' 

 

And, in three dimensions: 
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3D straight line with vertical component zero 

 

So the function: 

 

          

 

can produce three-dimensional space functions that have imaginary part zero, and lie only on 

the front real plane, or functions that have real part zero, and lie only on the top imaginary 

plane.  By extension,      can produce complex numbers that lie neither on the front real, nor 

the top imaginary planes, but anywhere in space.  As we shall see, they may also lie  partly on 

the front or top planes as well. 

 

 

 

Now consider the three-dimensional space function formed by the Euler Formula: 

 

                     

 

in which: 

                      

                         

                        

 

This gives the result that, in three dimensions, Euler’s Formula passes the vertical line test for 

functions.  Euler’s formula  becomes a helix extending left and right along the horizontal axis.  

Its real value output gives the amplitude in the vertical direction and it’s imaginary values give 

the amplitude in the depth direction.  
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The “Euler Helix” 

 

More on Euler’s Formula and Helix in section 6.0  Euler’s Formula Upgraded, Helix and Spiral 

Functions 

 

And as we will see throughout this book, one of the advantages of 3Di is that f(x) itself may be 

treated as a three-dimensional function and generate complex number output from real, 

imaginary or complex input, and by so doing, allow all three dimensions to be treated in one 

equation.  
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2.2  A Left Hand System 

The positive directions are right, up, and forward (the direction we are looking).  And, this 

makes a left hand coordinate system in which, from the origin: 

 

I. thumb pointing up - the vertical axis - takes on positive real ‘y’ values 

II. index finger pointing forward - the depth axis - takes on positive imaginary ‘z’ 

values 

III. middle finger pointing right - the horizontal axis - takes on positive real ‘x’ 

value 

 

3Di is a left hand coordinate system: 
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2.3  Projection Planes 

 

With any given 3Di space function,            , there will be six resulting two-dimensional 

‘projection planes’ which are the two sides of the three colored planes shown below. 

 

 
 

 

 

Of the six resulting two-dimensional planes, two of the planes are ‘real planes’ and four of the 

planes are ‘imaginary planes’, as follows: 

 

i. Both sides of the violet plane – horizontal axis (real) and vertical axis (real) - 

     , which we will call the front and rear real planes.  

ii. Both sides of the red plane - horizontal axis (real) and depth axis (imaginary) - 

      , which we will call the top and bottom imaginary planes. 

iii. Both sides of the blue plane – depth axis (imaginary) and vertical axis (real) - 

        which we will call the left and right side imaginary planes. 

 

In practice we will rarely, if ever, use the rear and bottom planes and only occasionally use the 

left side plane.  
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Front real plane         projected from            : 

 
 

 

Top imaginary plane,       ,  projected from              : 
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Right side imaginary plane,       , projected from  
  
 

 
         

         
: 

 
 

Going back to the idea of standing in front of a building with one eye closed, what we actually  

“see” is the ‘front real plane’ or FRP.  The top view and the right side view must be imagined, 

and therefore we call them the ‘top imaginary plane’, or TIP ,and the ‘right side imaginary 

plane’, or RSIP. 

 

What we are asserting is that to the degree that mathematics, and geometry in particular, 

assists us in understanding what we perceive as we look out at life, we must acknowledge the 

fact that what we perceive includes both seen and imagined components. Consequently both 

real and imaginary values must be included in the mathematical representation of it. 

 

 

  



A New Coordinate System for Complex Numbers 35 

greg ehmka, 2013 
 

2.4  Real, Imaginary or Complex Function Input and Output 

 

The terms ‘real function’, ‘complex function’, ‘complex valued function’, ‘complex valued 

function of a complex (or real) variable’, and so on, have different definitions by different 

writers.   

 

One difference being that for a ‘complex function’ the range only is defined to be complex by 

some ,while the range and domain are defined to be complex by others. This is further 

complicated  when one attempts to graph the various possibilities and needs to allow for ‘four 

dimensions.’ 

 

Using a simple logic table we have these possibilities: 

 

                

 

Input   

Output 

      

Real Only Imaginary Only Complex 

Real Only                          

Imaginary Only                             

Complex                                   

  

 

In 3Di, whether the output is complex, imaginary, or real isn’t so important in and of itself 

because what this means on the graph is that the output point is either in space, on one of the 

imaginary planes, or on the real plane respectively. 

 

Further, when we consider the possibilities of a complex input and complex output we do, in 

fact, have four dimensions.  Additionally, this fourth-dimension can be real or imaginary as in 

the following two examples: 

 

            

             

  

In the first we have three real dimensions and one imaginary dimension.  In the second we have 

two real dimensions and two imaginary dimensions.  These may be delineated as  4Di  and 4Dii  

respectively. 
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What this means is that a function with real input and real output will show up only on the 

front real plane (FRP.)  Real input and imaginary output will show up only in the imaginary top 

view on the TIP.  Real input and complex output will show up in space and so on.  If a three- or 

four- dimensional curve is projected to one of the two-dimensional planes, only two of the 

three (or four) values will be graphed, and this will depend on which plane the curve is being 

projected to.  In the case of four dimensions there is the additional choice of which input values 

to graph. 

 

With five dimensions: 

 

               

 

There are that many more choices of which “view” to graph. 
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2.5  Projecting a Space Curve 

 

To further illustrate how a three-dimensional space curve is projected to the front, top and 

right side planes: place your left thumb, index finger, and middle finger in initial position, and 

then: 

 

i. For the two dimensional projection view of the ‘front real plane’ (FRP), hold your fingers 

and thumb in initial position pointing the index finger forward, thumb up and middle 

finger right. Then, raise the hand to eye level until you cannot see the index finger. The 

intersection of the thumb and middle finger is the origin of the FRP. 

 

ii. For the two-dimensional projection view of the ‘top imaginary plane’ (TIP), which  has 

real values for the horizontal axis and imaginary values for the vertical axis, hold your 

fingers in initial position and rotate towards you (around the middle finger axis) such 

that you point the index finger up and the thumb towards you. The intersection of the 

index and middle fingers is the origin of the TIP. 

 

iii. For the two-dimensional projection view of the ‘right side imaginary plane’ (RSIP) , hold 

your fingers and thumb in initial position and rotate clockwise (CW) around the thumb 

such that you point the middle finger at yourself.  The intersection of the thumb and 

index finger is the origin of the RSIP.   
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Now to bring this all together: If we take an arbitrary space curve, which, as we will see later, 

has the 3Di equation                : 

 

Here is the 3Di graph: 
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Animation 2 ’Space Curve’ 

 

Projecting to the FRP,                ) : 

 
 

Projecting to the TIP,                   : 

http://youtu.be/bSU5kQBPOc0
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And projecting to the RSIP, 
  
 

 
              

              
: 

 
 

And then, combining all three projection views, FRP in violet, TIP in red, RSIP in blue: 
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See section 6.0  Euler’s Formula Upgraded, Helix and Spiral Functions for more on the  Euler 

Helix and other helixes and spirals.  
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2.6  Conics in 3Di 

In the coordinate system ‘3Di’, the normal conic hyperbola and normal conic ellipse are two 2D 

views (orthogonal to one another) of the same 3D object!  

 

To illustrate the basic idea here is the usual equation of a hyperbola: 

 

  

  
 

  

   
   

And, with a = b = 1 and C = 1, 

 

           

 

And, the normal graph in 2D: 
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If we take another look at the graph, and this time ALSO incude the interval         

 
 

The graph line joining the vertices actually graphs the real value of y, which is zero at each 

point, if the domain of x is allowed to take on values between 1 and -1.  

 

With  C   , in a normal 2D graph, there is a gap between the two vertices in the x, y plane 

(FRP, x is horizontal, y is vertical). This is because the values for x between the two vertices, if 

inserted into the equation, produce complex numbers and are therefore not usually shown.  

Now that we have an interpretation for these numbers, and allow them as part of the domain, 

what shows up in three dimensions is a circle in the      plane (TIP,   as horizontal, and    as 

vertical) in between the vertices! 

 

The associated ellipse/circle in TIP: 
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And then, seeing  the three dimensional view: 

 
 

 

 

“Conic” Hyperbola With Orthogonal Circle   
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Animation 3 ’3Di Conic’   

 

The TIP circle is orthogonal to the FRP hyperbola, and is not visible in the Front Real Plane (FRP) 

view, because the normal 2D plane graphs are projections. The circle only becomes visible in a 

3D view, or when viewing the Top Imaginary Plane (TIP) directly, that is, in top view. 

 

See: Section 4.1  Quadratic Input and Output for further discussion of the vertices and 

‘bifurcation.’ 

 

Additionally, notice that when square roots are taken, two three-dimensional functions are 

generated: one for each root.  See next section. 

 

 

2.61  Conic Nonlinearity 

The term ‘nonlinearity’ here means that there is an exponent other than one on the dependant 

variable.  In the above hyperbola-ellipse example, when we take the two square roots, if 

complex numbers are generated, there are actually four values output for each single input.  

These are the real and imaginary parts of each root.   

 

So, the hyperbola-ellipse equation: 

https://www.youtube.com/watch?v=ttub_YZDX1Q
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with a = b = 1 and C = 1, and rearranged, is: 

 

        

 

and, in 3Di becomes: 

             

              

 

In this form there are two output values – one real and one imaginary – for each root (function) 

produced for each input value.   

 

Both of these roots are then graphed in accordance with the 3Di axes:  The input   being on the 

horizontal axis. (Left middle finger, pointed right.) The real output   being on the vertical axis. 

(Left thumb, pointed up.) And, the imaginary output    on the ‘depth’ axis. (Left index finger, 

pointed forward.)  

 

This then, gives the two separate functions generating two three-dimensional space curves: 

 

                 in red: 

 

                in blue: 
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As we go on, we shall see that whenever roots are taken, multiple 3Di functions are generated.  

This provides a tool for the analysis of non-linearity; meaning exponents on the dependant 

variable of any given function.   

 

The two functions given by: 

 

              

 

by adding the notation of ‘Demoivre Numbers’, 

 

         
 
  

 

where   is the     root of the   roots of unity, these two functions can be written, 

 

 

            
 
       

 
   

 

in which     
 

   means both second roots of    And individually: 

 

    
 
                       

    
 
                       

 

So, with a third degree exponent on y: 

 

        

 

becomes: 

             

 

And,     
 

   means all three cube roots of    

 

         
 
       

 
                        

 

And, individually: 
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with:                          (first root in blue, second in red and third in black), 

note that the segments of the three functions that are on the FRP are the upper half hyperbola 

part of the black graph, and the lower ellipse part of the blue graph. 

 
Animation 4 ’Conic Nonlinearity’ 

  

http://youtu.be/uqge8Hwdmmk


A New Coordinate System for Complex Numbers 49 

greg ehmka, 2013 
 

The third cube root graph (black): 

 
 

The first cube root graph (blue): 
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The second cube root graph (red):  

 
 

For any degree   on the dependant variable: 

 

        

 

the individual roots functions are: 

 

         
 
       

 
  

 

in which     
 

   are all of the     roots of   for any degree     In section   
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4.59  Lame Curve Bifurcation, we will see that the exponent on   may be any degree also. 

 

See also: section 7.1   Helix and Spiral Nonlinearity, section 4.11  Quadratic Nonlinearity, and 

section 4.65  Polynomial Nonlinearity.  
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2.7  Helixes in 3Di 

The simplest helix graph is generated by Euler’s equation in 3Di coordinates: 

 

         

Interval          : 

 
 

A simple coefficient   in the exponent determines the frequency: 

 

          

 

with       

 
 

As we go through the sections of the book, it becomes clear why Euler’s Formula is regarded as 

the most remarkable equation in mathematics.  It is innate almost everywhere.   

  

See section 6.0  Euler’s Formula Upgraded, Helix and Spiral Functions for more discussion. 
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2.71  Beat Helix  

By adding a second term with a frequency close to the first one, a ‘Beat Helix’ results: 

 

               

 

with             

 

FRP 

 
 

TIP 
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RSIP,               : 

 
 

Three plane projection with                           
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3Di object with                           

 
 

 
Animation 5 ’Beat Helix’ 

 

http://youtu.be/9P6t_3_7a6A
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As we shall see in section 3.0   Historical Curves in 3Di, simple sums of helixes with different 

frequencies and amplitudes will produce, in side view, literally dozens of the classical curves of 

history.  Here is an example that resembles  one in the Epicycloid/Hypocycloid family: 

 

 

RSIP with                                    : 

 
 

 

 

2.72  Combining  Bases 

Virtually any algebraically valid statement can be effectively graphed with no special 

significance given to multiple bases, be they the same or different.   

 

As a simple example, consider the equation: 

 

                 

 

which is equivalent to: 
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More on the  -base helix in section 6.51  The  -                . In a simple way the two bases 

interact such that the two separate periodicities produce one helix: 

 

with interval          , here is the FRP (the real part   in violet) and the TIP (the 

imaginary part    in red) superimposed: 

 
 

And then, superimposing the RSIP        with   ungraphed in blue and zooming in: 
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In 3Di with -12 < x < 12: 

 
 

 

 
Animation 6 ’Two Base Helix 

 

 

http://youtu.be/j72DaftBdbs
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2.8  Exponentials in 3Di 

2.81  Exponential Graph Rotation 

As seen in section 1.3 in four dimensions beginning here with two dimensions, the usual 

exponential function that shows up in two dimensions has equation: 

 

     

 

 
 

In 3Di this equation would be: 

 

        

 

with     for all values of     If we were to add an arbitrary imaginary constant, say       to the 

exponent: 

 

             

 

the two dimensional graph, i.e. the FRP projection in red, would then be: 



A New Coordinate System for Complex Numbers 64 

greg ehmka, 2013 
 

 
 

The two dimensional RSIP (right side imaginary plane) projection for this red graph is: 

 

 
 

And in three dimensions: 

Normal exponential graph in black. 

Normal exponential graph with imaginary constant,                         in red. 
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The effect of adding the imaginary constant to the exponent is to rotate the graph in the 

positive imaginary, or depth dimension.   

 

In three dimensions think of an ‘i’ rotation as going from the horizontal or vertical to 

the front, rather than from the horizontal to the vertical. 

This forms the basis of a new geometric interpretation of complex logarithms. See section 6.52  

Rotating Exponentials. 

 

 

2.82  Inverse Lambert W 

Extending this notion of exponential graph rotation to, for example, the Inverse Lambert W 

function:  

 

         

with: 

       

 

if we were to add an imaginary constant, e.g.: 
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 the equation becomes: 

 

        
  

 
    

  
  

and in 3Di coordinates: 

        
  

 
    

  
  

 

then the three dimensional graph, in blue, is altered to: 

 
 

This blue graph in TIP (top Imaginary plane) projection with coordinates        has the graph: 
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So, this is the same graph projected to the TIP and so appears in the top view rather than on the 

real plane.  Other values for theta will rotate the graph just as with the usual exponential 

function. 

 

3.0   Historical Curves in 3Di  
 

A very large number of the historical curves, especially those that are inherently circular in 

nature, can be produced by combining two or more helixes and then projecting the result to 

the side view.   

 

3.1  The Elliptic Helix    

The elliptic helix is the result of a sum or difference of two helixes with the same frequency that 

are reciprocals of one another with different amplitudes.   

 

The difference between a helix and its reciprocal is the development: CCW (counter clockwise) 

for the helix and CW (clockwise) for its reciprocal.  

 

           in gray; 

                in aqua; 
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Animation 7 ’Reciprocal Helixes’ 

 

If the helix and its reciprocal are added, depending upon signs, either the imaginary parts or the 

real parts will cancel leaving only a plane sine wave.  Consequently, to obtain the elliptic helix 

the amplitudes must be unequal. 

And so, the equation for the elliptic helix is: 

 

                           

 

And, in the planar view,  RSIP (Right Side Imaginary Plane,) a simple addition or subtraction of 

the two amplitudes gives the semi-major and semi-minor axis lengths for the projected ellipse.   

 

                    

                    

 

In 3Di, with:            , and interval          : 

http://youtu.be/XLL2mzjs__w
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And in RSIP,  (hor., vert.) =       : 
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3.2  The ‘Cusped Helix’ 

 

Although we would not normally think of it as such, the elliptic helix is actually a ‘two cusped’ 

helix.  As we shall see this is a consequence of the frequencies being equal.  As we begin to alter 

the frequencies of the two helixes, an amazing array of remarkable results occurs. 

 

For example, leaving amplitudes and reciprocals the same, if we now insert additional 

coefficients, a and b, such that they become:            , the two frequencies add to give 

the number of ‘cusps.’ 

 

 

3.21  Tricuspoid 

                     

 

The result is a ‘Tricuspoid Helix’ and a corresponding Tricuspoid in RSIP: 

  
      Animation 8 ’Tricuspoid Helix’ 

 

 

3.22  Astroid 

 

With                                                 , and in this case, changing 

amplitudes to     : 

http://youtu.be/VnoDQt1huik
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       Animation 9 ’Astroid Helix’ 

 

3.23  5-cuspoid,  Etc.  

 

With                       ,                       

 

and, in this case, changing amplitudes to:     , a ‘pentagon’ results which may have more or 

less straight sides depending on amplitudes. 

 

Showing the RSIP on the left and, this time, the three planar projections separately on the right: 

 
 

There is a subtle difference if the frequencies are changed to          even though the 

sum is, as above, still         The difference is there are now five ‘loops’ rather than cusps.   

 

http://youtu.be/3EELmMjAywI
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A New Coordinate System for Complex Numbers 74 

greg ehmka, 2013 
 

Continuing with      ull helix on the right: 

  
 

And, adjusting amplitude to       : 

 
 

Needless to say the possibilities are virtually limitless.  

 

This principle can be applied in many situations.  See section 3.46  Square Cornu Spiral/Fresnel 

Integrals, and section 14.3  Geometric Torus Surfaces, and section 6.54  The Elliptic Spiral. 
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3.24  Trifolium 

 

The ‘cusps’ may become ‘loops’ with adjustment of amplitudes.  So returning to ‘Tricuspoid 

frequency’ settings: 

 

with:                                                   

 

and, in this case, changing amplitudes to:          

 

the result is the Trifolium: 

 
 

 

 

3.25  Rose Curves, Quadrifolium,  Etc. 

 

The following coefficients produce the Quadrifolium in RSIP.  The Quadrifolium is often shown 

with a       rotation relative to these figures.   

 

For a  simple rotation of any RSIP view, the coefficient       can be used as a ‘rotator’: 
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With      

 
 

With                    : 

 
 

Adjusting amplitude, 

    :                                                                          : 
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   :                                                                           : 

 
 

Rose Curves of any number of ‘petals’ may be produced by adjusting the coefficients a and b.  

There are harmonics involved.  For example,        , although adding to eight produces 

four petals/loops/cusps instead. 

 

Larger frequencies produce larger numbers of loops, cusps, etc.  

 

With                                : 

 
 



A New Coordinate System for Complex Numbers 78 

greg ehmka, 2013 
 

And, adjusting amplitude with      

 
 

 

3.26  Epicycloid, Hypotrochoid,  Epitrochoid, Hypocycloid 

 

The differences between these four types of curves become somewhat indistinct as the 

frequencies and amplitudes take on different values. The values for          can be positive or 

negative integers and any intermediate value.  All coefficients are valid producing a true infinity 

of results.  The harmonics of  a and b also apply producing additional results.   

 

E.g.,    
 

 
   

 

 
      : 
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With different frequency signs,                     the interval continues to be  

        : 

 
 

With               : 

 
 

With               : 
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3.3  Cycloid  

 

The usual parametric equation of a linear cycloid: 

 

                                       

 

In 3Di helix equations, sine curves and cosine curves are just the imaginary and real parts of the 

helix. So, if we begin with a sum of a helix and its reciprocal, and keep the amplitudes the same,  

then the imaginary parts will cancel, leaving us the real part: 

 

           

 

This gives us what in the parametric set of equations would be the cosine portion, which, being 

real, shows up in the FRP (violet.) 

 

Interval          : 

 
 

Similarly the difference of a helix and its reciprocal will cancel the real parts leaving us the 

imaginary part which is orthogonal to the real part. 
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This gives us what, in the parametric set of equations would be the sine portion, which being 

imaginary, shows up in the TIP (red): 

 
 

If we then combine these into a single equation: 

 

                           

 

and then, operate on the two separate parts in accordance with the parameters of a linear 

cycloid: 
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the resulting helix,        : 
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If we then deconstruct the helix into its three planar projections,       (FRP in violet, TIP in 

red, and RSIP in blue): 
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and then, isolate the RSIP view in two dimensions, with:      : 

 
 

Changes to ‘a’ will change the slope of the helix. With a = 1, the value of ‘h’ produces the three 

different types of cycloid. The cycloid, curtate cycloid, and prolate cycloid.    
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With        the prolate cycloid pictured above) and with                      , the curtate 

cycloid : 
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With        we have the usual cycloid:  

 
 

Notice that the cycloid is in the RSIP rolling along the vertical line;      . 
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If we desired to clean it up for normal presentation - meaning have the linear cycloid rolling 

along the x-axis in the usual real plane - we would: 

 

switch coordinates with: 

            

             

 
 

adjust; ‘a’ to -1: 
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translate in both directions: 
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3.31  Imaginary Slope 

 

All of the detail we just applied to arrange the helix to match the historical Cycloid is to provide 

a larger context for the actual 3Di equation of the Cycloid.   In 3Di coordinates the Cycloid is 

also a RSIP projection like many of the other historical curves but the 3Di equation includes the 

concept of imaginary slope. 

 

As we saw previously, here is the graph of a line with equation: 

 

        

 
 

This line lies entirely on the TIP and is not visible in the FRP except as a line that coincides 

completely with the  -axis.  The rotation that would bring this line to its present position can be 

thought of either as an aircraft changing its heading or as a ‘yaw’ of a spacecraft.  This change 

of aircraft heading or spacecraft yaw is ‘imaginary slope.’  In section 5.0  Complex Slope, the 

geometry and algebra of complex slope is presented in detail. 

 

If we then take this imaginary sloped line and add it to a helix: 

 

            

 

The following graph results.  The above line is included for reference: 
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The RSIP projection of this helix is then: 

 
 

 

 

 

The RSIP projection will match the historical curve with an upward translation and an    phase 

shift: 
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If we add a variable imaginary slope   which will determine different values for the imaginary 

rotation of the helix: 

 

                  

 

These different imaginary slopes will project to the RSIP the different forms of the Cycloid.  E.g. 

the prolate cycloid, in red with       the curtate cycloid, in black with       etc: 
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3.4  Historical Spirals in 3Di 

 

3.41  Archimedes Spiral 

    

 

And, in 3Di, the Archimedes spiral is just the RSIP of: 

 

          

 

but, with a reversal of the horizontal and the vertical axes. The historical curve is on the left and 

the RSIP curve is on the right.   

 

Interval        : 

 

Historical      RSIP 

 
 

Superimposing the two graphs shows that they are symmetrical about the line    ; 



A New Coordinate System for Complex Numbers 94 

greg ehmka, 2013 
 

 
 

The RSIP (right side imaginary plane) has the imaginary values from any function on the 

horizontal and the real values from any function on the vertical. So, the historical curve is the 

equivalent of reversing this; that is, graphing the real values on the horizontal and the 

imaginary values on the vertical. 

 

If the interval is extended in the negative direction as well, with interval           : 

 

Historical       RSIP 

  
 

Once again, the heart shaped loops, cardioids, and variations thereof are occurring over and 

over. 

 



A New Coordinate System for Complex Numbers 95 

greg ehmka, 2013 
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Here is the FRP on the left and the spiraling helix on the right: 

 
 

 

3.42  Fermat’s Spiral 

     
 
            

 

Fermat’s spiral is the RSIP of; 

 

       
 
     

 

With the same discussion as to isolating the RSIP and then reversing the graphing axes, 

meaning a change of coordinate systems from 2D to 3Di with: 

 

         y 

            

 

Interval         : 

 

Historical     RSIP 
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As previously shown, due to the graphing of the two square roots, this is actually two helix 

functions.  Extending the interval to include negative x, the two helixes (positive root in aqua 

and negative root in yellow), plus the side view projection of all four pieces, (positive and 

negative roots for plus and minus ‘x’): 

 

Interval            : 

 
Animation 10 ’Fermat's Spiral Helix’  

http://youtu.be/QdaQzVjy4jc
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3.43  Hyperbolic Spiral 

 

2D Polar equation: 

               

 

3Di Helix equation: 

            

 

With the same discussion as to isolating the RSIP, and then reversing the graphing axes with: 

 

         y 

            

 

interval         : 

 

 Historical        RSIP  

 
 

Here is the helix with an increase in frequency ‘f’ and an increase in amplitude ‘A’ to show the 

graph more clearly: 
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Interval        : 

 
 

The top view (TIP) of the hyperbolic spiral has an interesting graph.  If we extend the interval to 

include negative ‘x’  the graph is discontinuous at zero, periodic in both directions, and shows a 

decreasing amplitude.  It also shows a constant frequency with period equal to  
  

 
 . 

                             

 

TIP with interval         : 
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3.44  Lituus   

 

2D Polar equation: 

    
  
  

 

3Di helix equation: 

            
  

      

 

 

With the two coordinate systems related as before: 

 

         y 

            

 

Graphing both roots with interval:         

 

2D Polar      3Di RSIP 
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The two Lituus roots in helix form: 

 
 

 

 

3.45  Helix  Derivatives, Lituus 

 

An example of helix derivatives in 3Di using the Lituus and only the positive root: 
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The helixes rotate with each derivative.  With frequency,     , the amplitudes are the same 

except for the asymptotic part of the graph.  With frequencies other than   the amplitudes 

expand exponentially with each derivative. 

 

With    :  

 
 

With       , the original helix: 
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The first derivative is in violet: 

 
 

The second derivative is in red: 

 
 

And, the third derivative is in blue: 
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3.46  Square Cornu Spiral/Fresnel Integrals 

 

The Cornu Spiral(*) and Fresnel Integrals(*)  

 
 

Are just the side and front views of the spiraling helix with decreasing amplitude for equation: 

 

            
 

 

 

 

 
 

As we saw in sections 3.1  The Elliptic Helix, and 3.2  The ‘Cusped Helix, by adding a second term 

as a reciprocal, amplitude and frequency characteristics are modified. I.e.:  

 

                        
 

 

 

http://mathworld.wolfram.com/CornuSpiral.html
http://mathworld.wolfram.com/FresnelIntegrals.html
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The spiraling helix may be given different geometric shapes. 

 

So, with                      determines the number of cusps: 

 
 

And, the side view in blue and the front view in black take the ‘Square Cornu’ shape: 
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or, with                     a ‘Triangular Cornu’: 

 
 

Or, with                        

 
 

See section 

 

12.41  Cornu Spiral/Fresnel Surface for putting a surface on the Cornu Spiral.  
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3.5  Conversion From 2D Polar to 3Di Coordinates 

3.51  Cochleoid  

 

In case it hasn’t been noticed, in switching coordinate systems from 2D polar to 3Di for these 

spirals, whatever operations are done on theta; if those same operations are done on the 

coefficient ‘x’ in front of the normal helix, the specific spiral shapes will  result in RSIP. 

 

To illustrate, the Cochleoid has the polar equation: 

    

   
    

 
          

 

    

Beginning with the basic helix equation: 

 

         

 

Then, placing the coefficient ‘x’: 

 

          

 

Then, performing the same operations on ‘x’ as on ‘ ’’: 

 

     
    

 
    

  

And, with the usual change in coordinates: 

 

         y 
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interval           

 

2D Polar           3Di RSIP 

 
 

 

3.52  Conchoid 

 

More generally, to convert from 2D polar to 3Di coordinates, there are two steps: 

 

1) Replace θ by                .  

2) Insert      as a coefficient of the helix. 

 

 

Virtually any curve, no matter how exotic, that is expressed in polar coordinates can be 

converted to 3Di coordinates.   

 

Here are the 2D projections from the resulting space curve for the Conchoid in 3Di: 

  

2D Polar form:               

3Di form:                     
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RSIP with interval        : 

 
 

The horizontal line is the graphing software’s attempt to connect the graph across    at 

  
 

 
 
  

 
  

 

The FRP graph is continuous. Interval          : 
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TIP with interval         : 

 
 

The vertical lines are the graphing software connecting     
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3.6  Spira Mirabilis  6 New 3Di Equations for the Equiangular Spiral  

 

Helixes provide an opportunity to generate completely new equations for many of the historical 

curves.   

 

The Equiangular or Logarithmic Spiral, in addition to the polar to 3Di conversion, has some 

other interesting ways that it can be generated.  For the most part the new forms may be made 

as exact as desired by adjusting coefficients, and with some, adjusting graphing axes.   

 

i. the historical form             

ii. the 3Di converted form                      

iii. the ‘complex exponential’ form                

iv. a logarithmic form                 

v. a complex base form                              

vi. a negative base form                  

vii. an ‘exponential rotator’      form                

 

The logarithmic, complex base, and negative base forms generate the equiangular spiral in side 

view from very different helixes. (See section 6.3  The Helix Base  and Wavelength  for helixes 

with different bases.) So the various coefficients have to be adjusted taking into consideration 

helix direction - real, imaginary, or both - and whether the helix opens toward positive or 

negative  , as well as helix development, clockwise (CW) or counterclockwise (CCW). See 

sections below. 

 

 

3.61  In 3Di Converted Form. 

 

Historical equation:              

 

And so:                 

 

And, in 3Di:                              

 

Additionally, the      function, as well as any trigonometric function, is equivalent to using the 

real and imaginary parts of the basic helix function. 
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E.g., 
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with                
  

  
,  interval               : 

 

2D Polar      

 
 

 

3Di RSIP 

 
 

 

  



A New Coordinate System for Complex Numbers 117 

greg ehmka, 2013 
 

Below, the FRP (front in violet) and TIP (top in red) views show spiraling asymptotic amplitude 

to the horizontal axis in the negative ‘x’ direction, and increasing without limit amplitude in the 

positive ‘x’ direction.  They also show a fixed wavelength of   .  Changes in   only effect the 

amplitude, not the wavelength: 
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The three orthogonal plane projection views together:  
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And, the spiraling helix itself: 
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3.62  The ‘Complex Exponential’ Form 

              

 

Here, this helix is correlated to the standard form by: 

 

standard form             

this exponential form                

 

The spirals will correlate with properly chosen coefficients, e.g.,: 

 

 Example 1:                               

 Example 2:                                 

 Example 3:                                

 

And switching the horizontal and vertical axes in RSIP is necessary for the helix form. 

 

Example 1: 
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Example 2: 

 
 

 

Example 3: 

 
 

See section 11.21  Spira Mirabilis Again, for more on the spiral’s relationship to rotating 

exponentials. 
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3.63  In Logarithmic Form 

 

The Equiangular Spiral is also called the ‘Logarithmic Spiral’; and it is striking to note that this 

spiral can be generated by using the logarithm of an imaginary number as a base!   

 

The equation: 

        

 

generates a helix with constant amplitude 1,  just like the ‘Euler Helix’ (see section 6.0  Euler’s 

Formula Upgraded, Helix and Spiral Functions), except that this helix has a wavelength of 4, 

rather than 2 .  Further, by inserting a coefficient to  : 

 

           

 

various spiraling helixes are generated and with   
 

 
: 

 

      
  

 
   

 

which is:   

                 

 

By inserting coefficients           

                   

 

 

This may be made as exact as desired by adjusting         in the converted form, with         

in the logarithmic form. 

 

Examples:  

i. For                              

ii. For                            to seven significant digits. 

iii. For                                .  
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Here are the three 2D projection graphs superimposed on one another for the      base helix.   

 

Note wavelength     

 

Violet =  FRP 

Red = TIP 

Blue = RSIP  

 

Interval -12       :: 
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The same three 2D projection graphs orthogonal in space: 
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And superimposing the helix itself, in black, the asymptotic amplitude is in the negative ‘x’ 

direction: 
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3.64  In Complex Base Form  

 

The complex base form generates  an Equiangular Spiraling Helix with the following equation: 

   

              

 

 
 

This differs from the converted/historical form in the following ways: 

 

1) The spiraling asymptotic amplitude is in the positive ‘x’ direction rather than the 

negative ‘x’ direction; 

2)  As we stand and face the positive ‘x’ direction the development is CW rather than CCW; 

3) The fixed wavelength is approximately 5.90826 rather than 2 ; 

 

To offset the differences it is necessary to switch the graphing axes for one or the other. Then, 

this form, as the coefficient   is changed, lines up with the converted/historical form in side 

view in a periodic way!  But only for certain values of           Since there is only one 

coefficient,   in this form, it may be possible to insert another coefficient (similar to   in the 

logarithmic form) that lines them up for other values of           

 

So for example, with                 the spiral lines up for:  

                                 and others. 
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Converted/historical form in blue, complex base form in red: 

 
Animation 11 ’Equiangular Spiral Complex Base Form’ 

    

  

http://youtu.be/IEcPvvnR6cg
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3.65  In Negative Real Base Form  

 

When using a negative real base like      the two dimensional wavelength is    , but the 

amplitudes become so large and so small so quickly, that it is difficult to see exactly what is 

happening. 

 

For example with: 

            

 

the FRP graph is: 
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And, the three dimensional graph is:  

 
 

 

The larger the base becomes, the shorter is the 2D wavelength. So, if the base is made 

extremely large: 
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then, the 2D wavelength  
 

 
: 
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And, the graphs become somewhat more manageable, especially in the three-dimensional 

view: 
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Animation 12 ’Equiangular Spiral Negative Base Form’ 

 

As with the complex base form, it is necessary to switch 2D graphing axes in one or the other 

base forms. And then, by adding the adjusting coefficient as in the other forms: 

 

             

 

this spiral will line up with the converted/historical form similarly to the complex base form:  

i.e., periodically for certain values of            And, like the complex form it may be possible to 

insert another coefficient,    somewhere that lines them up for other values of          

 

E.g., with                                      , and others. 

 

See section 6.0  Euler’s Formula Upgraded, Helix and Spiral Functions for a more general 

analysis of helixes and spirals and an expanded interpretation of Euler’s identity. 

http://youtu.be/t4GrhYZVz6g
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3.66  An ‘exponential rotator’      form:  

 

                      

 

See section 9.40  The Equiangular Spiral and Cardioid Motion 
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3.7  Additional Terms in the Helix Equation 

 

The equation for the elliptical helix (section 3.1  The Elliptic Helix): 

 

                   

 

is a special case of the equation for ‘cusped’ helixes, circular cycloids and trochoids, rose curves, 

foliums, etc. (sections 3.2  The ‘Cusped Helix to 3.26  Epicycloid, Hypotrochoid,  Epitrochoid, 

Hypocycloid); 

 

In this elliptical helix equation,                

 

                     

 

and then by allowing for different ‘frequencies’ on each term, this basic idea can be extended 

to combine any number of helixes: 

 

                                     

 

The coefficient    serves as a simple ‘rotator’. This is for purposes of matching side views of the 

resulting helixes to other graphs, or for orienting the side view a certain way (See section 9.39  

A Simple Rotator) and so on.   

 

Additionally, any of the amplitude or ‘frequency’ coefficients can also be functions: 

 

E.g.,                                           
       

       

 

 

Needless to say, this creates a vast array of unlimited possibilities for new functions, any and all 

of which may be differentiated.  See sections 7.7  Higher Level Exponents.  
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3.71  Cardioid  

 

The historical equation for the Cardioid is: 

 

             

 

with       Using this more generalized helix equation, the Cardioid: 

 

                                 

 

has the following coefficients: 

 

                

                

    

 

Note that, in this case,  we did not directly convert the polar form to the helix form, but rather just 

found the right coefficients, summed two helixes with a constant ,and rotated it.  I.e., 

 

                    

 

2D Polar;  interval:           
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3Di  RSIP: 
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As the tracing coordinates show this equation is exact at least to 8 significant digits. 

 

The full Cardioid Helix on the interval;              

 

 
Animation 13 ‘Cardioid Helix’ 

3.72  Unification Note 

As a side note of interest, in the external link here, the historical form for the Cardioid, in 

addition to polar coordinates, is also given in a two dimensional Cartesian equation. I.e.,    

 

                          

 

Given that the helix equation which is a transcendental function, for the Cardioid is: 

 

                    

 

this gives an algebraic form and a transcendental form for the same object in the same 

coordinates.  This may be of significant potential usefulness in the eventual unification of 

algebraic and transcendental functions.   

 

3.73  Cardioid Derivatives 

 

http://youtu.be/g0G78mdr6lI
http://www-history.mcs.st-and.ac.uk/history/Curves/Cardioid.html


A New Coordinate System for Complex Numbers 141 

greg ehmka, 2013 
 

Going to the Cardioid derivatives, with coefficients as in the previous section, the first 

derivative (RSIP view) of the Cardioid is a Limacon, enlarged and rotated: 

 

     
 

  
                              

 

 
The second derivative enlarges and rotates further: 

 

     
  

   
                              

 



A New Coordinate System for Complex Numbers 142 

greg ehmka, 2013 
 

 
 

3.74  Freeth’s Nephroid with Derivatives 

 

2DPolar: 

          
 

 
         

 

3Di with coefficients:   
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2D Polar graph;  Interval;            

    

 
 

 

3Di RSIP graph;  Interval;           As with the Cardioid this equation is exact. 
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Freeth’s Nephroid space helix: 

 
 

 

Freeth’s Nephroid, first derivative in 3Di RSIP view: 
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Freeth’s Nephroid, second derivative in 3Di RSIP view: 

 

 
 

3.75  Limacon  

 

2D Polar equation: 

                        

 

 

The 3Di helix equation which, as the tracing coordinates show, is exact: 
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2D Polar graph, interval:               

 
 

 

3Di  RSIP graph; 
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The three orthogonal planar views in space:  Interval:           

 
 

 

The Limacon space helix: 
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3.76  Nephroid 

 

2D Polar equation for the Nephroid; 

 

                                            

 

 

The 3Di helix equation for the Nephroid is exact: 

 

                                 

 

          

            

    

 

2D Polar with interval:          
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3Di  RSIP with interval:         
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The three orthogonal planar views in space:           

 

 
 

3.77  Talbot’s Curve with Derivatives 

 

The historical expression for Talbot’s Curve is the two parametric equations: 

 

    
                    

 
  

 

    
                      

 
  

 

In 3Di the generalized helix equation is: 

 

                                 

 

and an approximation for Talbot’s Curve has coefficients:  

 

                  

                    

    

 

For the historical equations to make a general match the coefficients used are: 
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Historical curve in violet; 

3Di  RSIP in black:  
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And a side view of the three helix space curves with: 

 

The 3Di Talbot’s curve in black; 

First derivative in blue; 

Second derivative in red: 

 

 
Talbot's curve with derivatives 

  

http://www.youtube.com/watch?v=O8NUC5GvQzU
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3.78  Cowboy Hat with Derivatives 

 

Providing a little comic relief, and to show some of the endless possibilities of a generalized 

helix equation with only four terms: 

 

                                 

 

The coefficients for a “Cowboy Hat Helix” are: 

 

                  

                

    

 

 

3Di  RSIP;  Interval:           
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Black = Space helix for original equation; 

Blue =  first derivative; 

Red = second derivative: 

 

Animation 14 ’Cowboy Hat with Derivatives’ 

 

  

http://youtu.be/jL7SCkwpWak
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3.8  The Serpentine, Witch and a “Circle”  

 

Referring back to section 2.6  Conics in 3Di , the hyperbola generated by the conic: 

 

  

  
 

  

   
   

 

has an orthogonal ellipse in the center of it that joins the two vertices of the hyperbola, and in 

fact, produces two space functions with ‘bifurcation points’ where the graph makes an abrupt 

turn off the FRP onto the TIP:  

 

 
 

 

We can contrast this type of ‘conic hyperbola’ with the family of hyperbolas given by: 
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As well as not being continuous at zero, these hyperbolas do not have orthogonal ellipses in 

between the vertices due to there being no imaginary numbers generated in the solutions. 

 

 

 Setting C = 1 the graph of: 
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As is normal, this hyperbola exists exactly on the    plane, does not have a circle in the middle 

and is not continuous at zero.  If we were to now add an imaginary constant term to the input:  

 

            

 

Or:        
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With b = -1: 

 

The FRP in violet gives the Serpentine.  

The TIP in red gives the Witch of Agnesi.  

The SIP in blue gives a circle that converges to zero as            
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The three plane projections orthogonal in space:  

  

 

And the full 3Di graph: 

 
Animation 15  ‘Serpentine, Witch and Circle’ 

 

The historical equation for the Witch of Agnessi is:  

 

               

 

Or: 

http://youtu.be/_tz8ZYG42m4
http://www-history.mcs.st-and.ac.uk/history/Curves/Witch.html
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And, the historical equation for the Serpentine is: 

 

  
   

       
        

 

With        these become respectively: 

 

   
 

        
           

 

      
  

 

In three dimensions both of these graphs show up only on the front real plane (FRP) as follows: 

 

  

http://www-history.mcs.st-and.ac.uk/history/Curves/Serpentine.html
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Serpentine in violet: 

With of Agnessi in red: 

 
 

If we apply the imaginary coefficient   to the Witch (red), the effect is to make the two graphs 

orthogonal to one another, meaning to rotate the Witch graph a quarter turn,  
  

 
,  in the 

imaginary direction.  Then the dependant variable values will appear on the    axis rather than 

the   axis.   
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With the graphs are orthogonal they appear as follows: 

 
 

Algebraically, we have transformed the Witch graph from: 

 

   
 

        
 

 

to: 

    
 

        
 

 

Keeping the Serpentine graph the same, we now have: 
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In this form, the two curves together are identical to the 3Di equation: 

 

     
 

   
 

 

And so, we have an identity:  

 
 

   
 

 

      
 

 

        
 

   

      
 

 

In normal algebraic manipulation this is just multiplying numerator and denominator by         

But in 3Di coordinates this algebraic manipulation can have potentially deeper significance in 

combining plane curves into space curves or the reverse. 

 

For alternative values of           the identity has yet to be worked out. 
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3.9  Additional Historical Curves 

 

Semi Cubicle Parabola;  See section 4.5  Cusps;  

 

Newton's Diverging Parabolas; See section 4.55  Elliptic Curve Bifurcation 

 

Lame Curves;  See section   
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4.59  Lame Curve Bifurcation   

 

Tschirnhaus' Cubic; See section 4.7  Complex Coefficients -  Polynomials in Space    
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4.0  Polynomials in 3Di 
 

4.1  Quadratic Input and Output 

 

Under certain conditions the solutions to a 2nd degree polynomial equation give real numbers, 

and under other conditions the solutions give complex numbers.   

 

For example: 

          

 

will give the real number solutions:       
   

 
 

 

while: 

          

 

gives the complex number solutions:         

 

In the first example,           ,  the graph, meaning the function            

looks like: 
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And, it is easy to see that the two roots are real and equal to:      
   

 
    

They are, in fact, located at  what are usually called ‘the zeros’. And, this corresponds with the 

original equation being set to zero and having two solutions or roots.  

 

The second equation:           ,  meaning the function:            , looks like: 

 

 
 

The graph itself does not intersect the x-axis, and so ‘the zeros’,       , do not fall on the x-

axis and do not fall on the real plane at all. 

 

In 3Di we know exactly where these roots do fall.  Notice the red dot: 
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The red dot represents the two roots that are located at:                           They are 

not on the real plane and are ‘the zeros’ of the equation:             
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Both roots show up if we look at the TIP:  

 
 

Polynomial equations such as these can be a little confusing due to the fact that when solving 

for       represents the solution(s) of the equation, rather than input to a function.  So, in the 

function : 

 

        

 

the input is   and the out put is     , but in the polynomial equation: 

 

          

 

   is the solution and input and output, as such, do not strictly apply.  But, this is actually 

somewhat untrue, and grounds for further confusion, because the equation: 

 

          

 

is identical to the function: 

 

                   

 

If we apply the quadratic equation to the above polynomial: 

 

  
            

  
                

becomes: 
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Now here is the interesting part: if we, similarly, apply the quadratic to the whole function, we 

have:  

 

  
                

 
 

 

And then, if we find the solutions,    for each value of   , we will be building the three-

dimensional parabola backwards from        , rather than forwards from        ,and the 

notions of input and output have actually been reversed!   

 

This means that     is the input which specifies where the ‘solutions’ are located for that value 

of     Consequently,    is, in this sense, the output!  Graphing the parabola in this way allows us 

to include the portion of the graph that is below the vertex which lies in the third dimension.  

 

As an example, if we were to graph ‘the roots’ of some successive polynomial equations that 

differ only by a constant, for example: 

 

                         

 

this would be the same functionally as     being the input and    being the output, as in:  

 

                            

 

In the 3Di top view, this would look like the following: 

   

(Colors denote pairs of solutions.) 

      in red, 

      in blue, 

      in black. 
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In FRP these would look like the three graphs: 

 

 
 

If we extend this idea to allow   to take on all values, then the three-dimensional graph 

includes both the portion above the vertex and below the vertex, and  looks like: 

 

 
Animation 16 ’Quadratic Bifurcation’ 

http://youtu.be/0OwT9evz4jU
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4.11  Quadratic Nonlinearity 

 

From the above, we can see that in the usual solving of a polynomial equation when we  find 

the roots, which is equivalent to finding the zeros, - we are in actuality sliding the, would be, 

parabola (were we to graph one) up and down in accordance with the constant C, since    must 

always be zero.  In so doing, we often find complex numbers.   

 

But, in graphing the function itself there are no complex numbers generated, and so the graph, 

seemingly, “does not exist” below the vertex and so only lies in two dimensions on the real 

plane. 

 

When we reverse the roles of         by using the quadratic equation in this three-

dimensional way, if complex numbers are generated, then the imaginary part, along with  , 

becomes part of the output and will lie on the    axis.  This gives us:  

 

     
                

  
 

 

which, as said, reverses the input and output roles of           in the usual functional equation: 

 

           

 

and this provides the imaginary numbers for a three-dimensional graph. 

 

The quadratic equation, of course, gives two solutions and so, just as in section 2.61  Conic 

Nonlinearity, we have the two functions: 

 

     
                

  
 

 

     
                

  
 

 

The first is in red and the second in black: 
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4.2  Imaginary Polynomial Coefficients 

 

In 3Di, since we know how to graph the final result, we can use the imaginary coefficient     

pretty much anywhere in the equation and still generate a graph that makes sense.   

4.21  Imaginary Translation 

Beginning with the usual equation for an FRP Hyperbola/TIP Ellipse: 

 

        

 

and then, adding a translation term to what will be the dependant variable – meaning, we will 

be solving for ‘y’: 

            
            

           
 
  

          
 
     

 

At this point,   itself becomes complex. So proceeding to 3Di, with the real and imaginary parts 

of   being graphed on the vertical and depth axes respectively: 

 

             
 
     

 

Untranslated: 
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Translated in the    direction: 

 
 

 

The additional term, modifying  , can be used to translate either vertically along   (real), or 

along    (imaginary), or both. 

 

Another example: 

                      

 

with an added imaginary coefficient on the constant term: 

  

                        

 

will produce an ‘imaginary translation’ off of the real plane, directly forward along the ‘depth 

axis’, and downward: 
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4.22  Imaginary Rotation and Concavity 

Placing an imaginary coefficient on the linear term: 

 

           (in red) 

 

translates and rotates the graph, plus it softens the concavity:  
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4.23  Imaginary ‘Tilt’ 

And by placing the    on the first term: 

 

           (in red) 

 

the graph is translated, rotated and tilted: 
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4.3  Helixes as Polynomial Coefficients 

 

Example One 

 

In addition to imaginary or complex coefficients in a polynomial, helixes can be used as 

coefficients also.  Or, the other way around – meaning, polynomials as coefficients to the 

helixes. 

 

In this context, consider again the Spiral of Archimedes in section 3.41  Archimedes Spiral (with 

larger frequency    for visibility.) 

 

                

 

Showing only half of the spiral – meaning, interval:         

 

 
 

with a second degree exponent on   : 
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Example Two 

 

If a helix is used as a coefficient on the linear term of a quadratic: 

 

               

The 3Di graph: 
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The RSIP graph:  
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The FRP real values in violet. 

The TIP imaginary values in red. 

 
 

 

  



A New Coordinate System for Complex Numbers 186 

greg ehmka, 2013 
 

Example Three 

 

Also, we see that in 3Di, the coefficients of a quadratic, or any polynomial, may also be 

variables as well as real or  complex constants. And, the resultant object will still make sense 

and be able to be graphed.  

 

For example, here is an interesting but unusual looking quadratic. It serves as a reminder of the 

difference between the FRP projection and the FRP actual.  The curve has two distinct 

branches, only certain points of which lie on the actual FRP, as opposed to the FRP projection. 

Those points are where      and multiples thereof.    

 

            

 

For purposes of using the quadratic equation: 

    

     

      

 

we apply the quadratic equation, have   as the input, and      as the output, and keep the 

horizontal, vertical and depth axes the same.  Then we have: 
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The three projections for the positive root: 

FRP in violet. 

TIP in red. 

RSIP in blue. 
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Then, both roots:

 
 

Then, in three dimensions: 
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Jump Discontinuity 

 

In the original equation: 

 

            

 

after applying the quadratic equation, the dependant variable becomes   ,which having had an 

exponent of   , gives another example of nonlinearity.   

 

So, the two roots give the two graphs (positive root in red, negative root in black) with a jump 

discontinuity at       The jump discontinuity shows how the two different roots contribute 

different portions to the two seemingly continuous branches. 
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4.4  A Quadratic Ellipse-Hyperbola in Space 

 

As we saw in section 2.6  Conics in 3Di,  the usual conic equation of a hyperbola: 

 

  

  
 

  

  
    

 

actually includes an ellipse in top view, while the usual equation of an ellipse: 

 

  

  
 

  

  
   

 

includes a hyperbola in top view.  Therefore, the usual equations of an ellipse and a hyperbola 

are of the same mathematical object, and this object exists in three dimensions. The 

  operation sign only determines which of the two will show up in the front view. They are in 

effect quarter-turn rotations of one single three-dimensional object. 

 

At the two points (which are the vertices), where the ellipse and the hyperbola each become 

the other, a very interesting thing happens. In three dimensions the graph takes an abrupt turn 

onto the orthogonal plane. If it is curving on the FRP. then at the vertex, it abruptly turns onto 

the TIP. 

 

Seeing only a hyperbola on the FRP, for example: 

 

 
 

The vertices are ‘bifurcation points’ (See section 4.6  Polynomial Bifurcation) where the graph 

appears to be splitting into two branches. As we saw in section 2.61  Conic Nonlinearity, this is 



A New Coordinate System for Complex Numbers 191 

greg ehmka, 2013 
 

not the case, but that two functions occur as a result of taking the two square roots. So, we 

have the two functions: 
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                 (in red), 

                (in black). 

 
 

The same kind of ‘polynomial bifurcation’ (section 4.6  Polynomial Bifurcation ) occurs at the 

vertex of a parabola, which we saw in section 4.11  Quadratic Nonlinearity. This bifurcation 

point, among other characteristics, is where two separate functions (e.g., the ‘roots graphs’ ) of 

a quadratic meet.  

 

 In section 4.6  Polynomial Bifurcation, we will see that this same appearance of polynomial 

bifurcation occurs in 3rd, 4th and higher degree polynomials at the local maxima and minima. 

 

In addition to the above 3D ellipse-hyperbola object using a conic equation, 

we can also use quadratics to generate the ellipse-hyperbola object. 

 

In two dimensions, if we graph something we can call a ‘reciprocal sum’ (violet), or a ‘reciprocal 

difference’ (blue), with x as input on the horizontal axis and y as output on the vertical axis, we 

have the following: 
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And then, if we put one of them – say, the reciprocal sum – into quadratic form: 

 

          

 

and then, apply the quadratic equation:  

 

  
             

 
 

 

some interesting things occur: First, as before, when taking roots, there will be two functions 

generated. And second, by allowing     to take on all values, complex numbers are likely to be 

generated, which will give us a three dimensional graph.  And so, we have the following two 

functions: 
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In the original reciprocal sum function (in two dimensions), the vertices are just part of the 

smoothness of the graph. But, in the pair of functions that occurs after applying the quadratic 

equation, they will be the ‘bifurcation points’ at which multiple functions meet.   

 

Here, we are graphing y as input, but keeping it on the vertical axis, and then, x is the output on 

the horizontal axis. The   -axis becomes the third-dimension depth. 

 

First, we have the real component of the positive root projected to two dimensions – the FRP.  

Notice there is a slope to the straight line connecting the vertices. This shows that the 

orthogonal ellipse does not lie on the TIP, but in space.  

 

Interval:           

 
 

And then, we have the imaginary component of the positive root projected to the TIP. Notice 

the graph continues along the horizontal axis outside the space ellipse.  This shows that the 

hyperbola portion lies on the FRP. 
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The positive root in three dimensions:  

 
 

The negative root: real component in blue, imaginary component in red, three dimensions in 

black: 
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The two separate functions, positive root in black, negative root in grey: 

 
 

And, both roots showing the space ellipse-hyperbola generated from a quadratic: 
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Depending on the usual quadratic coefficients, a, b, c (which may be real, imaginary or 

complex), the attributes like eccentricity, orientation and size of the object may be altered.  

And, as we saw previously, the object may be rotated, tilted and even translated such that no 

part of  it lies on the FRP. 

 

The point here is that all, part, or none of the object may show up in one of the normal planes, 

and/or only be in space somewhere. Then, it must be projected to  a plane; and  that may have 

both a useful and a distorting effect that has to be considered – including the differences 

between the FRP projected and the FRP actual. 

 

4.5  Cusps 

In addition to vertices in two dimensions being indicators of bifurcation points, cusps can 

indicate bifurcation points as well.  

4.51  Helix Cusp 

In the cases where we reverse the function – meaning graphing   in terms of   , rather than 

graphing   in terms of   – the vertices, in addition to being where two functions meet, are also 

the places where the graph makes an abrupt turn, usually onto or off of one of the usual planes.  

Cusps can show this also even in the original function. They are often a place where these 

abrupt turns, onto or off of a plane, take place.  In the next example, a helix abruptly turns onto 

the FRP. It uses an        helix with a second level exponent. 

 

In the  -base helix equation: 
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The curve is a helix on the positive   side, and an asymptotic curve, turning onto the FRP and 

remaining on the FRP for negative     

 
 

The FRP shows this cusp at (x, y) = (0, 1).  Then the real values become asymptotic to the 

horizontal axis: 

 
 

 

The TIP shows that the imaginary part of the output falls to zero, at      , from positive   , 

and remains at zero:  
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And, the RSIP shows the constant amplitude helix transitioning to the FRP. Note the 

continuation of the blue line graph directly on the vertical axis: 
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4.52  Polynomial Cusp 

This equation again shows an abrupt turn onto the FRP: 

 

                 
 
  

 

The graph in space comes in from negative    , with real and imaginary components equal to 

one another until            , at which point imaginary values become zero, and remain at 

zero, as real values increase again, while remaining on the FRP: 

 
 

The FRP shows the real values decreasing to              , and then increasing again.  (The 

graphing software has a little difficulty with this one: not quite making it to zero.) 
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In the TIP, the imaginary values go to zero and remain there:  

 
 

The RSIP is a nice, straight line showing that the real and imaginary components are equal all 

the way to zero. Then, at zero, there would be a turn onto the FRP, which would continue as a 

vertical blue line directly on the axis. (Only a partial interval is pictured as the graphing software 

has difficulty making the turn.) 
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4.53  Semicubical Parabola 

 

The cusp of the Semicubical Parabola is also a turn (more of a gradual one) onto the TIP. By 

allowing    to take on negative values in the equation: 

 

      

 

we get the two functions: 

         
 
  

 

          
 
  

 

When graphed together in three dimensions, the usual graph is seen for positive   ; but, for 

negative   , the graph transitions onto the TIP. The imaginary values that are generated create 

two branches in top view – directly on the TIP, since the real values for negative    are all zero.  

 
 

The FRP shows the real values which are the usual graph for positive   . The upper half is the 

positive root, and the lower half is the negative root.  Both have real value zero for all of 

negative    . Note the continuing blue line along the x-axis. 
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Notice that in TIP, the imaginary values are zero for positive    , just as in FRP, the real values 

are zero for negative    

 
 

Since both parts of the graph lie directly on the FRP and TIP planes respectively, the RSIP shows 

the graph only on the two axes in blue.  
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And then, remembering that there are two functions, each generating half of the graph – but, 

each half contains both real and imaginary parts, positive root in black, negative root in red: 

 
Animation 17 ‘Semicubical Parabola’ 

4.54  Mordell Bifurcation, Moving the Cusp  

 

A Mordell Curve is a Semicubical Parabola with an additional constant. Once again, the cusp is a 

transition point from plane to plane (in this case, from on the FRP, directly onto the TIP). But, 

what makes this curve particularly interesting is that, as the constant changes, it is the cusp – 

the bifurcation itself – that is moving!   

 

The usual equation is: 

 

        

 

And so, in three dimensions with 3Di, there are the two functions: 

 

            
 
  

 

Positive root function in black; 

Negative root function in red. 

 

The animation begins with       and then to       and then down to       and back 

again. (Once again, the graphing software has a little trouble with the cusp.) 

 

Notice that at       the ‘half loop’ portion of the graph transitions from the TIP onto the FRP, 

as    goes from plus to minus; then, it transitions back again, as   goes from minus to plus. The 

bifurcation point itself bifurcates! 

http://youtu.be/LTy0fGNm1UY
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Animation 18 ’Mordell Moving Cusp’  

 

 

  

http://youtu.be/lTP32BVfwsk
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4.55  Elliptic Curve Bifurcation  

 

The usual graphs that we see of Elliptic Curves sometimes have breaks in them: for example, 

here,  where the curve appears to be in two completely separate parts. This is because those 

graphs only show the FRP. The breaks in the graph are where the graph has transitioned off the 

FRP and onto the TIP, or the other way around.   

 

Elliptic Curves are Mordell Curves with an added linear term: 

 

           

 

And so, the two 3Di functions are: 

               
 
  

 

As before: 

positive root function in black, 

negative root function in red, 

 

with:            

 

Notice the graph appears to be in four segments, and that the two functions meet at the three 

vertices or cusps. The two functions are on the same plane together in each segment and cross 

over one another at the vertices. (For a better view, this graph is oriented positive horizontal to 

the left.)  

http://www.daviddarling.info/encyclopedia/E/elliptic_curve.html
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In two dimensions below are the FRP real values with each of the two functions (red and black) 

contributing the real segments.   
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In two dimensions again, overlaying the TIP view with the FRP, the blue and aqua functions 

contribute the imaginary segments that are orthogonal to the red and black functions which 

contribute the real segments.  
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4.56  Elliptic Curve Nonlinearity 

 

As defined previously, nonlinearity here means exponents n other than one on the dependent 

variable: 

           

So in 3Di coordinates with, for example, n = 5 gives the five roots functions: 

      
    

          
 
                

 

The five Demoivre numbers would be the five fifth roots of unity.  In decimal and TIP graph 

form they are: 

                               

                               

                                

                             

                

 

  

  

  

  

And the five roots graphs in three dimensions: 
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4.57  Skewed Elliptic Curves 

  

Skewed elliptic curves represent an asymmetric variation of elliptic curves wherein the two 

functions are not mirror images of one another.  Additionally the line segment which connects 

the axes of the graph does not lie on the x-axis but has a slope. 

This can be generated by using the concept of nonlinearity and extending it to a quadratic form 

for the dependent variable.  (It can also be extended to a cubic or quartic form.) 

Using an equation like: 

                          

and, applying the quadratic equation for y: 

           

with: 

    

         

                 

and coefficients: 

                    

will move the “loops” off the usual planes and out into space, plus the graph is given a slope. 



A New Coordinate System for Complex Numbers 212 

greg ehmka, 2013 
 

 

 Changing the coefficient c alters the ‘skew’ of the curve.  The two dimensional real plane graph 

is on the left and the three dimensional graph is on the right for some values of c.  The 3D graph 

is oriented positive to the left to compensate for the graphing software's difficulties at the 

cusps: 

c = 1 (the above example) 

 

With c = 2: 
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With c = -2: 

 

  

 

 

4.58  Imaginary Hyperelliptic Curves 

  

Whereas elliptic curves are of degree three for the independent variable and of degree two for 

the dependent variable, hyperelliptic curves are of degree greater than three for the 

independent variable.  For example: 

                            
 
  

Positive root in red, negative root in blue, positive x to the left 
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Front real plane view: 
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Top imaginary plane view: 

 

Here is another example using a polynomial of degree six for the independent variable: 
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Front real plane view: 

 

Top imaginary plane view: 
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4.59  Lame Curve Bifurcation 

 

‘Polynomial Non-linearity’ means multiple roots of y , which generates both complex numbers 

as well as additional lines (functions) to the graph.  

 

Defining a type of polynomial non-linearity in this way allows each root to be its own 

independent function with its own independent 3Di space graph.   

 

 

Again, as in section 2.61  Conic Nonlinearity: 

    

        

        

 

with C= 4,    a = 2,   and        (square roots), 

 
 

but, with a = 4: 
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and, with a = 3, which, in TIP, generates Mordell curves and shapes: 

 
 

a = 5:         a = 6:      a = 3.3: 

 
 

As a increases, the FRP graph comes closer and closer to vertical lines, while the TIP graph 

generates the historical curves known as ‘Lame Curves’.  

 

TIP with:      
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Even exponents bring the TIP curve closer and closer to a rectangle, whereas odd exponents, 

such as with the Mordell Curves, bring the curve closer and closer to an interesting combination 

of rectangle and a ‘rectangular hyperbola.’  Intermediate exponents disclose intermediate 

shapes. 

 

TIP with:          

 
 

TIP with:         
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a = 21:  

 
 

With an odd exponent like       and square roots, the two roots graphs have the bifurcation 

points such that the hyperbolic segments are on orthogonal planes.  
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While even exponents,       and square roots, give the two roots graphs with the 

“hyperbolic” segments on the same plane. 

 
 

 

This is the case with odd and even integer values for    In three dimensions, as a is varied 

between integer values, the branches of the negative x ‘Lame hyperbola’ whirl and spin, up and 

down and back and forth, across the FRP. They effectively rotate in accordance with the 

changing imaginary values of   . See section 9.31  The Polynomial Morphing Function which 

also whirls and spins around the  -axis in accordance with a changing exponent.  

 

 
Animation 19 ’Lame Curve Morphing’ 

 

  

http://youtu.be/tBAI0tiPJJg
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4.6  Polynomial Bifurcation  

 

Just as with the quadratic equation applied to 2nd degree polynomials (section 4.11  Quadratic 

Nonlinearity), the procedures for finding roots of cubic and quartic equations will also generate 

examples of bifurcation, non-linearity and separate roots graphs.   

 

Analogous to quadratic non-linearity, the point in the polynomial roots graph of cubics and 

quartics where there is an abrupt turn onto a different plane, occurs at  what are usually called 

the ‘turning points’ – the maximums and minimums. Additionally, these turning points, 

bifurcation points, vertices, etc. are the points at which two or more functions (roots graphs) 

meet.   

 

 

4.61  Roots of a Cubic 

 

A fairly typical cubic equation like: 

 

             

 

will have the three roots:                                 

 

which can be seen in TIP, in red, in the following way.  

 
 

These points for the roots will show up like this by first solving the equation in one of the usual 

ways, and then graphing  , on the vertical as the input (in this case zero) ,and graphing      
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as the output on the horizontal and depth axes respectively. This is the same procedure that we 

used in section 4.1  Quadratic Input and Output.   
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In the FRP these three points will be the three zeros of the graph of equation:  

 

             

 

Only one of the three points (red) is actually on the FRP. The other two (violet) are projected to 

the FRP, and so only the real component can be seen: 

 

 

 
 

Ordinarily, this equation has   as input,   as output, and has a two dimensional graph exactly 

on the FRP. If the equation is slightly rearranged:  

 

                 

 

and, the Cubic Formula(1) (2) (3) is applied, varying   for as large an interval as we desire ( in this 

case         ), and then also continuing to graph   on the vertical, as above, along with 

          as above, then a remarkable graph results. The three roots obtained with the cubic 

formula for each   as input give three separate functions. When they are all graphed the 

following picture results: 

 

http://en.wikipedia.org/wiki/Cubic_function#Roots_of_a_cubic_function
http://www.sosmath.com/algebra/factor/fac11/fac11.html
http://mathworld.wolfram.com/CubicFormula.html
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Animation 20 ’Cubic Polynomial Bifurcation’ 

 

Note first the three separate functions;     
 

  in blue,     
 

  in red, and     
 

  in black. 

 

Then notice that the same exact graph that is produced in two dimensions on the FRP is also 

produced exactly on the FRP in three dimensions; but, each of the three separate functions 

provides only a segment  of the FRP graph. Notice also that the blue and the black graphs do 

not meet each other, whereas each of them meet the red graph. These meeting points are the 

polynomial bifurcation points, where the individual graphs make their abrupt qualitative 

changes in addition to encountering one another. 

 

http://youtu.be/GahaKDsjrII


A New Coordinate System for Complex Numbers 228 

greg ehmka, 2013 
 

When using the various cubic formula approaches, since there are two square roots for each 

cube root, there are six separate values generated in this way; and various choices are generally 

made as to which ones may be discarded along the way as duplicates.  While it is true that 

taken all together, the points on the graphs of the three branches will be the same regardless of 

the discarded values, in terms of continuity, they are not graphed in exactly the same way.  

Different choices of values along the way will contribute different continuous segments to the 

branches. So, it would appear (a more rigorous analysis would be necessary) that there are six 

different potential functions, even though they will perfectly overlay so as to generate only 

three distinct lines. 

 

For contrast, here is another set of colored segments that more generally uses the negative 

square roots in contrast to the positive square roots above. (Note that the graphing software 

detects discontinuities – the straight horizontal lines. And so, the discontinuities also reflect 

that, for continuity, certain choices within the calculations would need to be made before hand. 

This particular software is not programmable in the sense that it can make decisions within a 

routine.)  

 

For:     
 

   meaning the negative square root relative to the three cubic roots; 

and, for the cube roots:      
 

   in blue,     
 

   in red, and      
 

  in black. 
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Animation 21 ’Cubic Polynomial Bifurcation 2’ 

http://youtu.be/0QA7hSm7s_8
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If the polynomial has complex coefficients (see section below), turning points for any given 

polynomial that has them may lie in space. For example, with: 

 

                       

 

the local maximum can be seen here to be off the FRP and displaced in the positive    direction. 

 
 

 

When the cubic has only one real root for all portions of the graph, the other two roots will 

form branches wholly off the FRP: 
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In this example, the black line is the FRP graph:  
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4.62  Roots of a Quartic 

 

Although more complicated, the same basic principles apply to the Quartic. 

 

Graphing a more or less typical Quartic equation:  

 

                  

 

in two dimensions in the FRP: 

 
 

we can see already where the bifurcation points will be: at the three turning points. These 

points will be where two or more of the four separate roots functions will meet. 

 

Then, rearranging our equation: 

 

                      

 

using the quartic formula from (here) , and using the same graphing procedure as for the cubic 

above and the quadratic previously, there are four separate roots functions generated. In the 

quartic formula there are square roots, cube roots and fourth roots, which, of course, makes a 

http://en.wikipedia.org/wiki/Quartic_function
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too complicated picture to sort out here. So, the following four functions, taken from the 

procedure (here), would only be part of the total picture. 

 

Note, as before, that separate roots functions contribute segments to the real FRP graph. (Also 

note where the graphing software detects discontinuities and tries to accommodate):  

 
Animation 22 ’Quartic Polynomial Bifurcation’ 

  

http://en.wikipedia.org/wiki/Quartic_function
http://youtu.be/Qdjavw-XGeg
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4.63  A Quintic Roots Graph 

For the quintic below and the sextic following an online polynomial solver was used.  Just as 

before if we take a quintic function: 

                     

the two dimensional FRP graph is: 

 

The red horizontal lines enclose the interval: 

         

which is used for the 3Di roots graph below.  y takes on values on this interval in half unit steps 

and a numerical polynomial solver(*) is used to find the five roots which are then graphed at the 

corresponding value of y. 

So with the function converted to polynomial equation form: 

                       

and y taking values on the interval in half steps, the quintic roots graph forms as follows: 

http://www.mathportal.org/calculators/solving-equations/polynomial-equation-solver.php
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Rotate Quintic Roots Graph 

Each of the dots is a single solution to the equation at its corresponding value of y.  The black 

dots are the real solutions lying on the FRP and the blue dots are the complex solutions lying in 

space.  Note the bifurcation points where the complex solutions and the real solutions meet.  

These meeting points or bifurcation points will move around relative to the coefficients in the 

original equation. 

  

4.64  A Sextic Roots Graph 

 

Continuing the same process for a sextic we take a typical sextic function: 

                                  

and generate its two dimensional FRP graph: 

http://youtu.be/_LLn0CtLlOM
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As with the quintic above the red horizontal lines enclose the interval: 

         

which is used for the 3Di roots graph below.  y takes on values on this interval in half unit steps 

and the numerical polynomial solver(*) is used to find the six roots which are then graphed at 

the corresponding value of y. 

So converting the function to polynomial equation form: 

                                    

and letting y take values on the interval in half steps, using the numerical polynomial solver the 

sextic roots graph forms as follows: 

http://www.mathportal.org/calculators/solving-equations/polynomial-equation-solver.php
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Rotate Sextic Roots Graph 

The black dots, again, are the real solutions and the blue and red dots are the complex 

solutions.  In this example the blue dots connect to the bifurcation points and the red dots form 

wholly independent branches. 

  

http://youtu.be/Nqj5t1v3sew
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4.65  Polynomial Nonlinearity 

The definition that we have been using for nonlinearity is ‘exponents other than   on the 

dependant variable’.  We have been doing this in two ways: 

 

A. In functions of the form           and, 

B. In functions of the form                             where          are the 

functions that result after applying the quadratic, cubic, and quartic equations 

which, in effect, reverse the roles of         making   the independent variable and 

  the dependant variable which had exponents other than    

 

In the first form, (A) above, as with conics in section 2.61  Conic Nonlinearity, and Mordell and 

elliptic curves, section, we are just taking the nth roots of      and applying Demoivre. 

Numbers or the nth roots of unity using: 

 

         
 
  

 

where   is the     root of the   roots of unity. E.g., for the cube roots of unity,             

     .  So, with a given function having an exponent other than   on the dependant variable: 

 

        

 

   
    
       

 
  

 

this makes    complex so the individual roots functions result from each  : 

 

      
    
       

 
  

 

In the second form, (B) above, as said, we are reversing the roles of         by using the 

quadratic, cubic and quartic equations.  This process generally makes    complex and so we 

have: 

 

      
    
             

 
 

 

 

And similarly, the individual roots result from each    If techniques were available for solving 

quintic, sextic and so on equations, we could obtain the nonlinear roots graphs for 

             degrees.   

http://en.wikipedia.org/wiki/Roots_of_unity
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In equations of the first form there is theoretically no such limitation. For example, the sixth 

roots of a quintic: 

 

                  

which in two-dimensional form looks like this: 

 
 

would, with all six roots: 

 

      
    

                 
 
 
                        

 



A New Coordinate System for Complex Numbers 240 

greg ehmka, 2013 
 

lying in space, look like the following.  Each of the six roots is a different color.

 
Animation 23 Polynomial Nonlinearity’ 

 

(Once again, the software has a little trouble with the bifurcation points.)  

 

Also see section 7.1   Helix and Spiral Nonlinearity.  

4.7  Complex Coefficients -  Polynomials in Space  

 

If we generate some simple polynomials with the binomial expansion, but include a constant 

imaginary term, as in: 

 

            

for            

 

            

 

                     

 

                         

 

                              

 

the 3Di graphs are as follows. Notice that they lie in space with perhaps a single point on the 

FRP. 

http://www.youtube.com/watch?v=QFhonlddbFY
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Degree    : 

 
Animation 24 ’Polynomial in Space 1st degree’ 

 

  

http://youtu.be/WtO4j93P-f4
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Degree    : 

 
Animation 25 ’Polynomial in Space  2nd degree’ 

 

Degree    : 

 
Animation 26 ’Polynomial in Space  3rd degree’ 

 

  

http://youtu.be/cWGtq18QYcU
http://youtu.be/Mdf4E-RJ0Iw
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The RSIP view of this third degree is: 

 
 

which is the historical curve known as The Tschirnhaus' Cubic, with equation: 

 

             

 

With coefficient      it is: 

 
 

If   is set to   and if the 3Di equation is translated with: 
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then they become the same in two dimensions.  
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Continuing to fourth degree with    : 

 

                              

 
Animation 27 ’Polynomial in Space  4th degree’ 

 

 

  

http://youtu.be/I_5BRdeig0g
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4.8  Inverse Polynomial Functions 

The inverses of these four examples are all asymptotic and resemble some of the historical 

curves in their side views: 

 

For degree     : 

 

This is the converging to zero circle along with the Witch and Serpentine that is in section 3.8  

The Serpentine, Witch and a “Circle”: 

 
 

 

For degree     : 

This is a converging to zero Cardioid in the side view: 
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For degree     : 

 

This is a converging to zero Limacon in side view: 
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And for       

 

This is a converging to zero Limacon with an additional crossing of the horizontal axis: 
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5.0  Complex Slope 
 

3Di coordinates allow for a relatively simple extension of the standard concept of slope that we 

would now, in the front view, call ‘real only’ slope. To this is added ‘imaginary only’ slope which 

shows up in the top view.  Summing the two together generates ‘complex slope.’   

 

 

5.1 An Intuitive Model 

 
Complex Slope 

Using the animation above, visualize an aircraft taxiing down the runway prior to take-off. Our 

view is off to the side, with the taxiing aircraft moving from left to right. And, let’s say that 

exactly to the right is a heading of zero. Exactly in front of us, the aircraft reaches take-off speed 

and rotates to begin its climb. This is the violet ball at the origin. The violet line is the aircraft’s 

http://youtu.be/RdovfpXRgjU
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climb while maintaining the same heading. This is real slope and zero imaginary slope, 

sometimes referred to as ‘rise over run.’ 

 

Next, at the black ball, the aircraft reaches cruising altitude and levels off while maintaining the 

same heading. And, the black line shows its flight path with zero real slope and zero imaginary 

slope. 

 

Next, at the red ball, the aircraft executes a 45-degree turn to the left while maintaining 

altitude. The red line shows its flight path with imaginary slope and zero real slope. This could 

be referred to as ‘glide over run.’ 

 

And finally, while maintaining that heading, at the blue ball, it begins another climb. The blue 

line then shows both real slope, which is the climb, and imaginary slope, which is the heading 

other than zero. So, in flight path terms, complex slope is the sum of climb/descent plus 

heading. 

 

 

5.2 Real, Imaginary and Complex Slope 

 

Removing the idea of an aircraft, since it has a direction and motion, and just focusing on the 

line segments, real only slope of a line in three dimensions is: 
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while imaginary only slope is: 

 
 

Real only slope appears in the front view (FRP) and imaginary only slope appears in the top view 

(TIP). 

 

Real only slope has the usual slope-intercept equation of a line: 

 

                              

 

and imaginary only slope would then have a corresponding slope-intercept equation of a line: 

 

                                     

 

In graphing terms, real only slope is rise over run and imaginary slope would be glide over run. 

Either or both can be positive, negative or zero.  Complex slope combines the two and is ‘rise 

plus glide over run’.  The two equations can be combined to give: 

 

                       

 

Algebraically, complex slope extends standard slope by adding in the imaginary number for the 

glide.  Since there are two slopes: 
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And the calculation of complex slope becomes: 

 

       
                 

     
 

 

Also, rather than an axis intercept, there is a displacement of the line relative to both the y-axis 

and the   -axis. Meaning there is a real displacement and an imaginary displacement.  So the 

complete equation is: 

 

                      

                                        

 

The real displacement moves the line up and down.  The imaginary displacement moves the 

line forward and backward. 

 

5.21 Example: 

What is the equation of the line that goes through the two points:  (3,2,i)  and (1,-3,6i) ? 

The first step is to calculate the two slopes, real and imaginary: 

   

       
                 

     
 

       
             

   
 

       
     

  
 

   
 

 
            

   

 
  

(The two slopes, of course, need not be equal. This example just turned out that way.)  

 

The second step is to insert the slopes along with either point into the basic equation to solve 

for the displacements.  Using the first point: 

 

                      

                       

                      

                  

 



A New Coordinate System for Complex Numbers 254 

greg ehmka, 2013 
 

The third step, if needed, is to insert the slopes and the second point into the basic equation to 

verify that the two points give the same  displacements. 

 

                      

                        

                 

 

And so, the completed equation for the line with the two specified points is:  

 

                       

                          

 

When this line is projected to the front view (real only slope) it appears as: 
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When the line is projected to the top view (imaginary only slope) it appears as: 

 
The 3Di graph of the line along with the two specified points is as follows: 

 
rotate complex slope line 

 

 

 

  

http://youtu.be/L5lWyYRTGNc
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5.3 Inverse Imaginary Slope 

 

In addition to real slope in the FRP and imaginary slope in the TIP, denoted by: 

       
                 

     
 

   
       

     
            

         

     
 

 

we can define an ‘inverse imaginary slope’: 

 

                             

 and denote it by: 

 

     
     

       
 

 

Real slope shows up in the front view and imaginary slope shows up in the top view. Inverse 

imaginary slope shows up in the right side view. 

 

One way that this can be visualized is by standing at the end of a runway while the aircraft takes 

off going away from us. In this front view the aircraft appears to rise vertically. This vertical 

ascent appearance occurs in both front and top views.  And, this demonstrates that a line with 

inverse imaginary slope, so defined, appears as a vertical line in both the FRP and the TIP.      

Intuitively, we can carry these visualizations further to formally observe that: 

 

(1) A line with real only slope shows up as a vertical line in the side view, and a line with 

zero slope in the top view.  

(2) A line with imaginary only slope shows up as a line with zero slope in front view, and a 

line with zero slope in side view.  

(3) And, as stated above, a line with inverse imaginary only slope shows up as a vertical line 

in both front and top views. 

 

Inverse imaginary slope may appear somewhat counter intuitive in that the glide path of the 

above mentioned aircraft would have a positive inverse imaginary slope  on landing/approach, 

and a negative inverse imaginary slope on take-off/departure.  

 

Continuing the example with the two previously specified points, (3,2,i)  and (1,-3,6i), the 

inverse imaginary slope can be calculated as: 
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This can be viewed, in the above last animation, as the blue line comes around to show the RSIP 

view; and it can be verified by projecting the line (blue) to the RSIP as follows.  In the side view 

the axes are: 

                             

 

and the two displacements, when combined, project to a y-intercept that is different.  By 

inserting the two points into the equation: 

 

              

 

the y-intercept is calculated as: 

 

                        

                     

                          

                       

 

So the equation of this line is: 
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And when this line is projected to the right side view it appears as: 

 
 

 

The three different two dimensional graphs are generated by the following equations:  
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5.4 Table of Slopes in 3Di 

 

Additionally, the three 2-dimensional slopes can also be visualized as the three planar rotations 

of a spacecraft. I.e., pitch, yaw and roll which is indicated in the fourth column of the table: 

slope notation plane slope 

rotation 

action 2D relationships 

complex          pitch + 

yaw 

rise +  glide 

over run 

Slope in all 

three, FRP, TIP, 

RSIP 

real only    FRP pitch rise over run Horizontal in TIP, 

vertical in RSIP 

imaginary 

only 

    TIP yaw glide over run Horizontal in 

both FRP and 

RSIP 

inverse 

imaginary 

     RSIP roll rise over glide Vertical line in 

both FRP and TIP 
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5.5 Transformation of Two Dimensional Slope 

 

If we specify a point at (1, 1/2 , 0i): 

 
and then draw a line through this point with no displacement, meaning a line through this point 

and the origin: 

 
The equation of this line is generated by: 

                      



A New Coordinate System for Complex Numbers 261 

greg ehmka, 2013 
 

With no displacement, zero imaginary slope and an arbitrary 1/2 real slope, the equation 

reduces to: 

  
 

 
 

 

which is a line with real-only slope located on the front, real plane (FRP). 

 

If we were to rotate this line about the x-axis using a ‘rotator coefficient’ ia (see sections: 3.25, 

3.7, 9.38 on this rotator in the eBook), the effect is to alter the line’s two dimensional real and 

imaginary slopes.  Meaning: 

 

          

      

     
         

 
 

   

 
 

 

So as a moves through its interval, the line is rotated about the x-axis: 

 
line rotation about the x-axis 

 

As the line rotates, its projected two dimensional slope transforms from real-only to complex to 

imaginary only to complex.  And then to negative real-only to complex to negative imaginary-

only to complex and then back again to positive real-only.  So if we look at various values of a: 

For a = 0 the slope is positive real only: 

http://youtu.be/I5CocbTme9Y
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On the right, the black line is the two dimensional real slope in the front view and the red line is 

the two dimensional imaginary slope in the top view: 

 
 

For a = .6 the slope is complex: 

 

     
                

 
  

 
 

For a = 1 the slope is positive imaginary only: 
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For a = 1.6 the slope is complex with negative real and positive imaginary: 

 

     
                 

 
  

 
 

For a = 2.6 the slope is complex with negative real and negative imaginary: 
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For a = 3 the slope is negative imaginary only: 

 

   
  

 
  

 
 

As stated before, if a displacement is added to the line, a real displacement moves the line up 

and down and an imaginary displacement moves the line forward or backward.  Then the line 

will rotate at the displacement point about a line (green line below) through that point and 

parallel to the x-axis.  For example, adding a displacement and using the above line with a = 3: 

 

     
  

 
      

  

 
 

Just as this line, which is rotated about the x-axis, transitions between real and imaginary slope, 

if the line is rotated about the iz-axis the slope will transition between real and inverse 

imaginary slopes.  Similarly if the line is rotated about the y-axis the line will transition between 

imaginary and inverse imaginary slopes.  
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5.6  Polynomial Space Trajectories 

 

In section 4.7  Complex Coefficients -  Polynomials in Space, we showed some examples of how 

an imaginary coefficient on the different terms will affect the graph of polynomials. 

 

Taking a slightly different approach, if we, for example, simply add an x2 term to the above 

equation of a line, giving: 

 

                             

 

the graph, in red, becomes a space parabola. The blue line and it’s two points is the previous 

example.  

 
Animation 28 ’Complex Slope and Polynomial Space Trajectory’ 

 

  

http://youtu.be/kcR4YK_HOiA
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As can be seen, adding the x2 term bends the line into a parabola while keeping the same 

orientation in space.  Further, the original line is tangent to it, which can be proven by setting 

the two equations equal, which gives zero as the value for  , and then the tangent point, in 

green, is just the displacement. 

 
 

Seen in this way, complex coefficients on the terms of polynomials of virtually any degree and 

number of terms, are actually slopes that can generate three-dimensional trajectories along 

which objects can travel.  Before we can do this, a few more variables are required. 

 

(The colored balls in these examples are default objects of the PT-GC software, but in section 

12.0  4Dii:  Surfaces, we will generate our own spheres and other closed surface objects, like 

barrels and lozenges.  Then, in section 15.0  6Dii: Surfaces in Motion, these objects will be put in 

motion along both orbits and polynomial space trajectories.)  
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6.0  Euler’s Formula Upgraded, Helix and Spiral 

Functions 

6.1  Euler’s Formula in Three Dimensions 

 

In this section, we will go into more detail on bringing Euler’s Formula into three dimensions 

and derive an upgraded version of it. Euler’s formula is, of course, stated in base   exponential 

form. His formula is now upgraded for all bases – positive, negative, real, imaginary and 

complex. Additionally, there are now four identities associated with the formula. The identities 

are also stated for all bases – positive, negative, real, imaginary and complex. 

 

Normally, If we were to take Euler’s identity, his ‘Famous Five Equation,’ 

 

        

 

which is a special case of: 

 

                

 

if generalized to the usual complex plane:  

 

            

 

and then, generalized further to 3Di coordinates: 

 

            

 

and again, generalized further to include amplitude and frequency characteristics: 

 

                         

                        

 

and then, generalized further still, to include multiple terms: 
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This multiple term helix equation is what we were using in the previous sections: 2.7  Helixes in 

3Di and 3.0   Historical Curves in 3Di.  Any number of terms may be added such that we can 

generate what may be called a virtually limitless new class of ‘Helix, Spiral and Rotating 

Exponential Functions’.  

6.2  Coordinates in  the Normal Complex Plane and in 3Di  

 

The normal complex plane has coordinates         In 3Di coordinates, the Top Imaginary Plane 

(TIP) and the Right Side Imaginary Plane (RSIP) also have one axis imaginary and one axis real. 

They have coordinates, respectively,                     Both of these are two-dimensional 

projections of any three-dimensional curve. Along with the Front Real Plane (FRP), these are the 

three main two-dimensional planar projections of curves in space.  See section 2.3  Projection 

Planes.  

 

Euler’s formula generates a circle in the usual complex plane, but it generates a helix in 3Di as 

follows: 

 

Beginning with Euler’s wonderful Equation: 

 

                

 

and then, by making it into a parametric function of  , we trace out a unit circle in the usual 

complex plane.   

 

This unit circle then becomes periodic as    increases past 2 ,  and decreases past -2 , making it 

a multi-valued function in two dimensions. 

 

The circle is formed parametrically in the complex plane by: 

 

           

            

 

In 3Di, this unit circle shows up naturally in the RSIP (right side imaginary plane) as the circle 

which is a side view projection of a helix.   

 

In three dimensions, as we generate the ‘Euler Helix’ and its three planar projections, the circle 

in the complex plane is the same as the circle in the RSIP, but with the axes switched. This is for 

the side view. 
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For the top view, the axes are the same for the complex plane and the TIP, meaning: horizontal 

real and vertical imaginary. But, since the TIP is a top view, meaning we are looking down on 

the curve, it would be as if we  laid the complex plane down in front of us; and so, what was 

vertical in the complex plane becomes depth in 3Di. As we said in section 2.1  Constructing the 

Coordinate System, 3Di is constructed by taking both the real plane and the complex plane, 

joining them along the x-axis, and making them orthogonal to one another. 

 

 

The conversion of the parametric 2Di coordinates in the normal complex plane, to the ‘Euler 

Helix’ in 3Di is: 

 

 

3Di coordinate conversion 

 

From:   Parametric coordinates in the complex plane, 

 

         

 

           

            

To:   3Di 

 

    

    

      

 

With the axes so redefined, we can now express Euler’s Formula as a true three-dimensional 

function – two output numbers and one input number: 

 

         

 

To review from section 2.2  A Left Hand System, the coordinates,            are graphed as 

follows: 

 

(1) The input x will be graphed on the horizontal axis, left middle finger, positive is to the 

right.  

(2) The real output y will be graphed on the vertical axis, left thumb, positive is up. 
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(3) And the imaginary output    will be graphed on the ‘depth’ axis, left index finger, 

positive is forward, to the front. 

 

 

Here, violet, is the FRP (front real plane) which, of course, is the normal cosine curve: 

 
 

And, in red, the TIP (top imaginary plane), which of course, is the normal sine curve, but in 3Di 

its curve lies orthogonal to the FRP: 

 
 

And, in blue, the RSIP (right side imaginary plane), which is the normal unit circle in the complex 

plane that in 3Di is both orthogonal to the other two graphs and has the axes switched.  I.e., the 

imaginary axis is horizontal. 

 
 

Here are the three planar projections in 3D: 
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And the 3Di helix, itself: 

 

6.3  The Helix Base  and Wavelength   

 

The Euler Helix given by; 

         

 

can be applied in a more general way to helixes of any base,    

 

         

 

In a helix, altering the base changes the wavelength. But, most often, the e-base is retained, 

and wavelength and frequency characteristics are changed by adding a coefficient to the 

exponent.  I.e.  

 

                              
  

 
              

 

This is, of course, fine for many applications. But, keeping the concept of different bases allows 

for an easier understanding of the greatly expanded range of helix and spiral functions that 

come with negative, imaginary and complex bases, as well as negative, imaginary and complex 
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wavelengths - all of which, geometric interpretations will follow.  Rather than only frequency 

changes to the e-base helix, the relationship between base and wavelength will serve to easier 

analyze what’s going on with all of the new and different possibilities.  

 

To derive this broader view of the base/wavelength relationship, we go back to Euler’s identity: 

 

        

and, rearrange: 

       

 

and, take natural logs without simplifying: 

 

               

 

Then we can observe that, in this particular case,   is the base  , and   is the wavelength 

divided by 2.  I.e.,  
 

 
 . So, a more general statement of Euler’s identity can be written: 

       
  

 
      

 

Since the natural log of   is equal to 1, It is still true that;  

 

          

And so: 

   
  

 
      

 

Simplifying and rearranging we have the direct base, wavelength relationship: 

 

The Base – Wavelength Relationship 

 

        

Or: 

  
  

   
 

 

which effectively expands the definition of wavelength to include negative, imaginary and 

complex bases in addition to real ones. 
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Note that in the form: 

 

    
  

 
 

 

this is the same as the wavenumber equation(*)  

 

  
  

 
 

 

And so, in this context, wavenumber is, in fact, equal to the natural log of the base! 

 

      

 

And, when needed, we can write this in exponential form: 

 

   
  
  

 

 

  

http://en.wikipedia.org/wiki/Wavenumber
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6.31  The New Famous Five Identities 

 

Noting in Euler’s identity: 

        

 

as we did above, that in this particular case,   is the base  , and   is the wavelength divided by 

2, i.e.  
 

 
 , so a more general statement of Euler’s identity, can be written by taking from above: 

 

       
  

 
      

 

and then converting this back to exponential form: 

 

    
  
          

  
      

 

then, we have stated Euler’s identity for any base and its associated wavelength, this tells us 

that Euler’s Famous Five equation is true for all bases!  This means that when any helix base   

has its wavelength    in the exponent, the result is always equal to 1;  and, if the exponent is 

equal to the wavelength over 2, i.e.,      , the result is always equal to -1.  

 

Additionally, there is an identity for               so: 

 

The New ‘Famous Five’ Identities: 

         

           

           

            

 

 

This will be seen to be true for all base-wavelength pairs including real, imaginary and complex.  

 

For example, the  -base: 
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And, a random complex base      : 

 

  
  

   
 

 

                
  

       
 

 

                                

 

 

6.32  Euler’s Famous Formula Upgraded 

 

Euler’s formula: 

               

 

combined with the laws of exponents and de Moivere’s theorem(*): 

 

     
 
              

 

                  

 

allows for some interesting insights. First, if      we have, of course, the ‘Euler Helix’ that we 

have referenced several times. 

 

In FRP: 

http://en.wikipedia.org/wiki/De_Moivre's_formula
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Next, if            in the FRP: 

 
we have a helix with both wavelength and frequency equal to    This will be seen to be true any 

time a base and wavelength pair are used for a helix, meaning: 

 

          

 

gives a helix with wavelength and frequency      So, for example, an arbitrary helix, 

referencing the above complex base: 

 

                               

 

will also give a helix with wavelength and frequency equal to    
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Now, the fun part: Just as when we derived the initial base-wavelength relationship, we 

observed a deeper meaning in           and then made use of that fact. So, in the equation 

above which used the laws of exponents and de Moivere’s theorem: 

    

                  

 

When       it is also true that          We then have: 

 

                            

 

 

And then, just as with the base-wavelength relationship, we can speculate that this is true for 

any base. If so, we have: 

 

 

 

 

 

 

 

The Euler formula upgraded for any base    

 

                           

 

Or, if the helix is regarded as a wave, since the wavenumber        

 

                       

 

And then, in wavelength form: 

 

        
   

 
       

   

 
    

 

            

                                 

 

So, except for        ,  ‘Euler’s Formula Upgraded’ makes his formula valid for all bases – 

positive,  negative, real, imaginary or complex.   
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A relatively simple proof for: 

 

                           

 

begins by substituting: 

 

       

 

on the right side giving: 

 

                 

 

and then converting the left side to e base by solving for y in: 

 

       

giving: 

        

so: 

     

which gives: 

                 

 

Euler’s formula itself which, of course, is already proved. 
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6.4  Wavelength Interpretations 

 

The wide ranging number of possibilities, which includes: amplitude characteristics, geometric 

possibilities, additional terms, and additional levels of exponents, will result in  graphs of 

general types: 

 

(A) Exponential Graphs 

(B) Rotating Exponential Graphs 

(C) Helixes 

(D) Spirals 

(E) Combinations of the above 

 

Additionally, each of these will have two or more general characteristics from among: 

 

(1) Axis location: Existing on the real axis, imaginary axis, somewhere in between, or in 

space. 

(2) Amplitude: Continuously increasing, asymptotic, or constant. 

(3) Frequency/Wavelength:    may be positive, negative, real, imaginary, or complex 

(Definitions below.) 

(4) Direction:  Positive or negative, real, imaginary, or complex.    

(5) Rotational Development: Clockwise (CW) or counterclockwise (CCW.) 

 

The following is a very incomplete list of a few possibilities. And, as can be seen, the table itself 

is incomplete.  Its purpose is only to serve as a general organizational beginning.   

 

The first column lists several base possibilities. The second column describes the effect of a 

variable exponent: i.e.,    if it is real. The third column describes the effect of that variable 

exponent if made imaginary. There would be, in addition, exponents that may have part 

variable and part constant, both constant (for variable base), both variable, and so on. 

 

And, the fourth column is the type of wavelength that results using that particular combination 

of base and wavelength relationship.  
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6.41  Table of  Exponent Effects for Various Bases: 

Constant Base    Variable Exponent Real Part Variable Exponent Imaginary Part Wavelength    

Real Positive Exponential: increasing 

values for positive x 

Helix: CCW positive real 

Real Positive 

Inverse 

Exponential: increasing 

values for negative x 

Helix:  CW negative real 

Real Negative 

other than (-1) 

Spiral:  expanding outward 

from helix at       CCW 

Spiral contracting inward from an 

exponential at      and 

increasing values for negative x 

complex (+Re, -Im) 

(-1)  Helix:  CW Exponential: increasing values for 

negative x 

    

  Helix:  CW Exponential: increasing values for 

negative x 

    

   Helix:  CCW Exponential: increasing values for 

positive x 

   

Imaginary Positive 

other than   

Spiral with increasing 

amplitude for positive x 

Spiral with increasing amplitude for 

negative x 

complex (+Re, -Im) 

A few Additional 

Base possibilities 

below  

   

Imaginary 

Negative 

   

Real Negative 

Inverse  

   

Variable Real Base  

    

   

Variable Complex 

Base           

or          

or             
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6.42   Positive Real Wavelengths 

This is the normal or usual situation which has been used thus far, except for a few exceptions 

like the rotating exponential and spiral ( section 2.8  Exponentials in 3Di), and some of the 

historical curves (section 3.6  Spira Mirabilis  6 New 3Di Equations for the Equiangular Spiral  

Here are a few more multiple term examples: 

 

Loops and More Loops Helix: 
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“Stop Sign” Helix: 
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“Triangle” Helix: 
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6.43   Negative Wavelength Interpretation 

 

If we happen to have helix base values of      , The natural log of that value will result in 

wavelengths that will be negative. We can interpret the difference between a negative and a 

positive wavelength in the following way: as a CCW (counter clockwise) development of the 

helix for positive wavelength, and as a CW (clockwise) development for negative wavelength 

values. 

 

This would be as follows: standing at the origin with “forward” directed along the positive  , or 

imaginary (depth) axis, and then, making a quarter turn to the right. We would now be facing 

toward positive   along the real ‘x’ axis. This is equivalent to the left side view (LSIP.)  With this 

orientation, positive wavelength develops CCW and negative wavelength develops CW.  

 

For example, the two graphs below have reciprocal bases and equal wavelengths, except for 

the sign. We can see that the positive wavelength (left graph) has an initial development CCW 

into the octant, which is above the origin plane and to the left; whereas, the negative 

wavelength (right graph) has an initial development into the octant above the origin plane and 

to the right.   

 

Visually, imagining ourselves standing with this orientation, i.e., standing at the origin facing 

positive horizontal infinity, the positive wavelengths develops CCW into the forward upper left 

octant, whereas negative wavelengths develop CW into the forward upper right octant. 

 

                                                      

 

Interval:        

 
Interval:        
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Due to the symmetry of the helix, it is important to note that this difference cannot be seen in 

the normal real plane, the FRP. It also cannot be seen in either of the RSIP or LSIP side views if 

the interval for ‘x’ extends in both the positive and negative direction. It is easiest seen in the  

TIP:  

 
This difference is able to be seen in the side view if we make the interval for   small and 

positive.   

 

In LSIP,         

 
 

6.44   Imaginary Wavelength Interpretation 
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Using the base-wavelength relationship: 

 

  
  

   
 

 

wavelengths that are imaginary only, can be generated with bases: 

 

          

 

Then: 

    
  

     
        

  

      
       

  

      
 

 

Comparing with the ‘Euler Helix,’             which has real only wavelength of     a real 

wavelength (in black) lies along the real x-axis: 

 
 

while an imaginary only wavelength (in red) with: 

 

                      

 

can be defined to lie along the imaginary or depth axis. In this case, with a wavelength of    
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As before, the sign indicates CW for negative and CCW for positive. Except, in this case, we are 

standing at the origin and facing positive, imaginary infinity,      With this orientation the 

development is CW. 

 

Note that the exponent is imaginary with       and real with        Further, note that by 

defining an imaginary wavelength to lie along the depth axis, we are defining the input to be 

graphed along the    , or depth axis, and then the two outputs are graphed on the         axes 

respectively.   

 

Note further that this means we are graphing an imaginary value along the x-axis! So, we have 

defined an imaginary wavelength to, in effect, occur within a different coordinate system. That 

being 3Dii, rather than 3Di.  They are actually different versions of 4Dii coordinates.  

 

For the helixes, in both the  -base and the  -base cases, the input values are actually the angle 

values    So, the functions are more accurately described by: 

 

         

        

 

And then,  , as the input, is defined to be either on the  -axis or   -axis, in accordance with the 

wavelength being either real or imaginary. 

 

Along with a new geometry of natural logarithms, section 11.22  The Four Coordinate Complex 

Exp/Log Function, this defined 3Dii coordinate system will be seen in section 11.3  The 
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Imaginary Logarithmic Surface, to set the stage for a geometric interpretation of imaginary 

logarithms!  
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6.45   Complex Wavelength Interpretation 

 

A complex value for the wavelength     essentially indicates a spiral. The quantity lambda   has 

some interesting characteristics. For positive real bases it does indeed indicate the actual 

wavelength, which we can call, in two dimensions, the ‘pitch’ of the helix or spiral. 

 

For bases,            it also indicates the pitch, except that it adds the two additional pieces 

of  information: that the helix or spiral runs along the imaginary axis, and whether it develops 

CW or CCW. 

 

For all other bases, where     becomes complex and a spiral results, it may indicate both pitch 

and amplitude or only amplitude!  

 

Helixes become spirals with gradual changes to the base. In the following animation the base   

is changing for: 

        

 

The interval is:              Although the base values do not show in the video, note that 

in the middle, when        a helix results; and, when the base is any other value a spiral 

results. 

 
Animation 29 ‘Negative Base Spiral Morphing’ 

 

http://youtu.be/yydDiB2Al8Q
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Next, notice that in the following two-dimensional animation of the above, the pitch does not 

change. The base-wavelength relationship gives a complex value for   that only applies to the 

amplitude! Note that the pitch remains fixed and equal to      

The real part in violet and the imaginary part in red: 

 
Animation 30 ‘Negative Base Spiral Morphing with Constant Pitch’ 

 

In the next example, the base   is negative real     , and becomes complex by virtue of the 

presence or absence of a constant imaginary addition.   

 

              

           

 

When            as before, a helix results. For all other values of     is complex and a 

spiral results. Note that, in this case, the spiral does not change direction at    , but rather 

changes development, moving from CCW for            to CW for             

http://youtu.be/9Euyz12fFt0
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Animation 31 ‘Complex Base Spiral Morphing’ 

 

And, now, in the two-dimensional animation of the above, note that the pitch is changing.  And, 

here, the complex value for    applies to both pitch and amplitude: 

  
Animation 32 ‘Complex Base Spiral Morphing with Variable Pitch’ 

 

 

So, in terms of nomenclature, the quantity     which we have been calling ‘wavelength’ refers at 

times strictly to pitch, strictly to amplitude and sometimes both. Likely there are additional 

properties to discover. At least for spirals,     shows up, for the most part, as a constant ratio of 

the coordinates          as follows: 

 

                      

 

http://youtu.be/DazVbgbdWn0
http://youtu.be/2j7mjGe_75U
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“For the most part” means there are additional subtleties to be worked out in detail that have 

to do with:  

 

- when the real and imaginary parts change places,  

- the change in CW or CCW development,  

- and with which bases either the real or the imaginary part of the exponent generates 

the spiral  
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6.5  Exponentials 

6.51  The  -base Exponential 

As is commonly known,     is a real number and equal to           which is the reciprocal of  

 
 

    As it turns out, any value for    in: 

 

      

 

is also a real number. Graphing all of the values for   results in the i-base exponential graph: 
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Contrasted with the usual e-base       exponential graph, in black: 

 
considering that the y-axis, vertical, is real in both cases; but that the input  , horizontal, is real 

for the e-base exponential; and the input    is imaginary for the i-base exponential; it’s possible 

that the i-base exponential can be defined to be in the depth direction. If so, then in three 

dimensions: 

 
 

They both may be made to have different ‘slopes’ with the coefficient    
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With        

 
 

 

6.52  Rotating Exponentials 

The usual e-base exponential graph: 

 

     

 

when given a complex exponent: 

 

           

 

can be given a new interpretation. The new interpretation is that of a rotating exponential 

graph also shown in sections 1.3 Example, and in section 2.81  Exponential Graph Rotation. In 

the case of the e-base exponential,    is imaginary, which would rotate the graph in the 

imaginary, or depth, direction as    takes on different values. This is an example of a function in 

4Dii coordinates.  
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Interval:                          

 
Animation 33 ‘e-base Exponential Rotation’ 

 

Contrasted with the  -base exponential: 

 

      

 

if given a complex exponent: 

 

           

 

  is real. This suggests that the rotation for the  -base exponential is in the FRP. It is also a 4Dii 

function generating complex imaginary logarithms. See section 11.3  The Imaginary Logarithmic 

Surface. 

 

  

http://youtu.be/_RdxJjuyBmQ
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The  -base exponential completes one rotation in units of    rather than    and so with 

interval      , and back again: 

 
Animation 34 ‘i-base Exponential Rotation’ 

 

The rotating exponential sets the stage for a new geometry of logarithms, both natural and 

imaginary.  See sections 11.2  A New Geometry of Natural logarithms, and 11.3  The Imaginary 

Logarithmic Surface.  

 

 

6.53  Exponential Tangents 

 

There are some interesting ways that a real exponential graph is tangent to a spiral. 

 

The first is the exponential of any positive real base, and the spiral resulting from the negative 

of that base. 

 

     

           

 

 

 

http://youtu.be/ysdZ43-AylU
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The exponential graph (in blue) is tangent to the real values of the spiral (in violet) on the even 

integers, and to the imaginary values of the spiral (in red) on the positive half-integers. 
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The negative of the exponential graph,   

      

 

 is tangent to the real values of the spiral on the odd integers, and tangent to the imaginary 

values on the odd half-integers. 
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And, in three dimensions: 

 
 

 

6.54  The Elliptic Spiral 

Recalling from section 3.2  The ‘Cusped Helix’, a helix can be made to have any number of 

‘cusps’, by different ‘frequency coefficients’, in the exponents of the reciprocal sum. And, with 

the elliptic helix, the amplitudes must be different. The same is true for spirals. For example:  

 

                         

 

gives an elliptic spiral, in black, that gradually becomes circular as     increase. The two 

exponential tangent lines are in blue: 
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Interval:           

 
Animation 35 ‘Elliptic Spiral’ 

 

 

 

 

 

 

 

 

http://youtu.be/GhHkmUSTjS4
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In two dimensions, the two exponential tangent lines only touch the real values (in violet) – 

positive for the even integers, and negative for the odd integers. What is interesting is that it 

appears only the imaginary values (in red) are changing to alter the shape from elliptic to 

circular. 

 
 

The end view of the negative   half portion of the graph shows the change in shape more 

clearly. Interval:          
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A ‘Triangular Spiral’ or a ‘Square Spiral’ results from a change in the first exponent: 

 

                                              

                                             

 

 

 

The end views with the same interval: 
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As in section 3.2  The ‘Cusped Helix’, for helixes with different amplitude coefficients, the 

‘triangle’ and the ‘square’ can be shaped with cusps or loops. In fact, the spiral shows cusps for 

negative    and loops for positive    

 

 

 

 

 

 

 

 

For the Triangular Spiral, only the positive exponential graph appears to be tangent, and only 

for the real values at the even integers: 
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For the Square Spiral, the negative exponential is again tangent: positive for even integers and 

negative for odd integers. And, both exponentials are again tangent to the imaginary values, 

but only certain ones: 
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The three-dimensional views: 
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6.6  The   or Variable Base  

 

A variable base or ‘x base’ is, of course, that which generates polynomials. For some interesting 

variations see: 

 

Section 4.7  Complex Coefficients -  Polynomials in Space. 

Section 7.31  2nd Level Exponents and the ‘x-base’  

Section 11.4  More Exponential/Logarithmic  Surfaces, for  -base surface. 

 

In this section there are a few examples of the helixes and spirals generated using the ‘x base’ 

with real and imaginary exponents. If the exponent is also real and variable, meaning: 

 

        

 

then, although undefined at     there is an exponential graph for positive   , and a spiraling 

asymptotic curve graph for negative     
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And, in the two-dimensional projections: real values, FRP (in violet), imaginary values, TIP (in 

red) and the side RSIP (in blue):  

 
 

 If the exponent is imaginary: 

 

         

 

then there is a helix with decreasing wavelength for positive  , and an expanding spiral for 

negative    
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The two dimensional projections: 
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With an inverse real exponent: 

 

         

 

The curve is not continuous at zero, is an expanding spiral for negative   and is linearly 

asymptotic, i.e., not spiraling, for positive     
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And, with an inverse imaginary exponent: 

 

          

 

the curve is not continuous at zero, is a helix having decreasing wavelength for positive    and is 

spiraling asymptotic for negative  : 
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7.0  2nd and Higher Level Exponents 

7.1   Helix and Spiral Nonlinearity   

As with conic and polynomial nonlinearity (section 4.65  Polynomial Nonlinearity), ‘Demoivre 

Numbers’, or the nth roots of unity, are used for the roots graphs of helixes and spirals.  So, for 

the cube roots of the Euler Helix: 

 

       

 

the three roots graphs will be: 

 

         
 
      

 
                

 

Separately, the graphs have jump discontinuities. (And, as before the straight lines are the 

graphing software’s attempt to connect the graph across the discontinuities, and can be 

ignored.)  First root in violet, second root in red, third root in blue: 

 
 

 

http://en.wikipedia.org/wiki/Roots_of_unity
http://en.wikipedia.org/wiki/Roots_of_unity
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All together the three separate roots connect exactly at the jump discontinuity points: 

 
 

As with the branches of the polynomial roots graphs, there are three cube root helixes 

generated that are  each continuous by virtue of piecing together contributions from the actual 

roots graphs. These ‘virtual helixes’ go from violet, to red, to blue, and repeat.   
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The wave length of the virtual helixes is tripled to   . In two dimensions, original helix, in black: 

 
 

If each of the roots graphs is cubed, or the three are multiplied together, the original helix is 

restored: 

 
 

Possibly the virtual helixes and ‘virtual spirals’, next, will provide further insight to jump 

discontinuities in general. 

 

A negative base spiral follows the same pattern: 

 

         

 

         
 
     

 
                  

 

The original spiral: 
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The three separate spiral roots graphs, violet, red and blue forming ‘virtual spirals’ that move 

from violet to red to blue and repeating: 

 
 

The original spiral has a two-dimensional pitch of    as do all negative base spirals: 
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And, the virtual spirals have that pitch tripled to   while the separate segments have a 

‘segmented wavelength’ of  .   

 
 

The next two examples – one with square roots, and one with cube roots – are of an Airy Type 

spiral. See section 7.5  ‘Airy Type’  Spiral  for detailed discussion of Airy Type helixes. By Airy 

Type, what is meant, is an exponential graph for positive    and periodic with decreasing 

amplitude for negative     An Airy Type spiral can be generated with a second level exponent on 

the Euler Helix.  I.e., 

 

        
           

 

which, on the FRP projection, with interval:          has real values: 
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And, in three dimensions: 

 
Animation 36 ‘Airy Type Helix’ 

 

And then, here is the same equation in 2nd degree nonlinear form, taking square roots. For 

square roots, the roots of unity are the real numbers     

 

               
                    

 
 
  

 

The original helix (in gray), plus both square roots together (in aqua): 

http://youtu.be/eSx7zztem9I
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Animation 37 ‘2nd Degree Nonlinear Airy Type Helix Roots’ 

Making the original equation into a 3rd degree nonlinear form, and taking cube roots: 

 

               
               

 
         

 
 
                

 

 
 

 

http://youtu.be/lzGcdudeSqs
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The three cube roots together (in aqua), and the original helix (in gray):

 
Animation 38 ‘3rd Degree Nonlinear Airy Type Helix Roots’ 

 

7.2  Additional Levels of Exponents 

 

With higher levels of exponents an entire universe of exponential functions becomes 

extraordinarily interesting and limitless.  3Di coordinates allow for virtually any equation, no 

matter how unusual to “make sense’ in some way.   

 

The interplay between exponential graphs, helix graphs and spiral graphs all with multifaceted 

changes to amplitude, frequency, wavelength and so on make for an orderly and extraordinary 

array of possibilities.   

 

Here is an arbitrary, somewhat radical, example of added levels of exponents.  Note the tracing 

coordinates show that the graph is asymptotic to the base,    in the positive   direction:  

 

                        
   

                              

 

 

 

http://youtu.be/MeSPHPAljjM
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Slightly altering the above equation so that the graph is asymptotic to   in both directions:  

 

                               )                    

 

With FRP, real values, in violet and TIP, imaginary values in red: 

 
 



A New Coordinate System for Complex Numbers 324 

greg ehmka, 2013 
 

These two graphs are orthognal to one another so in three dimensional, 3Di coordinates: 

 
 

 

Zooming out and slightly rotating for the 3D helix; 

 
 

And the, side view, RSIP projection to complete the picture; 
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In addition to being interesting in and of itself, this side view, planar projection demonstrates in 

an astonishing way just how much information can be lost in projecting a three dimensional 

object onto two dimensions and additionally how confusing it can be.  

 

 

 

 

7.3  Variable Wavelength and Location of the ‘Zeros’ 

 

In certain helixes and spirals with a normally fixed pitch there is a wonderful relationship 

between a second level exponent and the pitch/wavelength.  When the second level exponent 

is   the usual fixed pitch results.  And when the second level exponent is other than   the pitch 

will vary but in a regular way such that the location of the zeros can be predicted.  There are 

many aspects to the process depending on the base, whether the zeros are the real ones or the 

imaginary ones and differences for positive    and negative     A few will be explored. 

 

Using the  -base helix at first since its wavelength of   is easier to work with.   

 

The usual  -base helix with its pitch of     

 

        



A New Coordinate System for Complex Numbers 326 

greg ehmka, 2013 
 

 
 

Adding a second level exponent less than one will make the wavelength longer and variable: 

 

       
 
  

 

So with      

 

       
 
  

 

For negative   the graph is non spiraling asymptotic so there are no wavelengths: 

 
 

For positive   the beginning zero is at: 

 

              

 

And subsequent real zeros are at:  

 

                      

 

Calculating the first few: 

                   

                    

                    

                    

 

And so on.  For      
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The real zeros are at: 

 

              

                      

 

 

The zeros and consequently the wavelength of any subsequent wave segment is a direct 

function of the second level exponent.  And so: 

       
 
  

 

                      

 

 

Since this particular curve is non spiraling, asymptotic for negative   there are also no imaginary 

zeros for negative     So for the imaginary zeros and positive    the process is the same except 

there is no ‘beginning zero.’ 

 

                                    

                             

 
 

The same process works for integer exponents and rational exponents greater than    so the 

exponents for the helix and for the zeros are simple inverses of each other: 
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Helix exponents greater than   shorten the pitch, and exponents less than   lengthen the  

pitch. So, for example, with      

 

       
 
 

 

there are helixes in both directions of    that mirror each other and have decreasing 

pitch/increasing frequency: 

 
 

The zeros will be at: 
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 For positive real bases the helixes are similar to the imaginary base ones, i.e., helix in both 

directions for    , and non spiraling asymptotic for negative   with      The process for 

the zeros is slightly different.   

 

For example, with e-base and      

         
 

         
 

 
  

  

 

 

 
 

Here the difference is that the real zeros are given for even n, and the imaginary zeros are given 

for odd n. 

 

There are many more aspects to explore, like: 

 

i. The coefficient    for the imaginary base zeros, and the coefficient     for the real 

base zeros, are related to            
  

   
 

ii.    for the imaginary bases is 
 

 
   in               

iii. For     ,    and so on, there is an infinite wavelength with different asymptotic 

properties.   

iv. For spirals with second level exponents like:            
 
    For positive   the 

process of finding zeros is the same since only the amplitudes change.  But there is a 

different structure for the zeros of the negative   asymptotic spiral. 
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So, the basic principle is that the actual wavelengths are a function of the second level 

exponent. If the second level exponent is 1, then there is just the usual wavelength. But, if the 

second level exponent is other than 1, it modifies the usual wavelength in predictable fashion, 

even though the wavelengths themselves are varying. 
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7.31  2nd Level Exponents and the ‘x-base’ 

 

 

Recalling the x-base helix/spiral from section 6.6  The   or Variable Base: 

 

         

 
 

There is a technique from section 3.65  In Negative Real Base Form of making the base 

extremely large to greatly shorten the wavelength for easier viewing of the spiral’s properties.  

So, adding a large coefficient and a second level exponent: 
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the helix results for positive x, the spiral results for negative x , and with interval          

the graph with q = 1 becomes:
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And, the right end view: 
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The FRP real values in black, and the TIP imaginary values in red: 
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And, the three planar projections in 3d: 
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Following are the very interesting results occurring by making small changes to q: 

 

Violet = FRP, Red = TIP, Blue = RSIP 
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If ‘q’ modifies only     rather than      in the exponent, i.e.: 

 

               
 

 

 

then the effect is to alter the amplitude of the negative ‘x’ part of the graph. 

 

q = .956 , interval  -6 < x < 6:  
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q = .951, interval = -12 < x < 6: 
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7.4  Exotic Graphs Using Second Level Exponents   

 

Example 1:  

 

Combining a negative real base, a constant imaginary first level exponent, and a variable second 

level exponent that operates on    only: 

 

          

 

will generate Limacon/Cardioid Helixes of different shapes and sizes. 

 

With                     (Note large amplitude scale):  

 
 

With                      , a flattened Cardioid: 

 
 

And with imaginary base,           
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FRP in Violet, TIP in Red, RSIP in Blue. 

 
 

Example 2: 

 

Another simple approach is to take the basic  -base helix and use it both as base and exponent:  

 

            
   

 

With                             
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And, with     : 

 
 

 

Example 3: 

 

In a more complicated example, consider an  -base helix with a helix reciprocal sum exponent: 

 

        
         

 

 

Notice that in the RSIP (blue) view the graph is a circle, but in the TIP (red) the graph is 

reversing direction every period. The full helix (black) shows how it can be seen either way.  

This is another example of how projections can leave out important information. 

 
 

In an equation like this there are actually several potentially different numbers. There are the 

real and imaginary components of the first part of the exponent, the real and imaginary parts of 

the reciprocal part of the exponent, and the real and imaginary parts of the equation as whole. 
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If we use only the real component of the first part of the exponent, i.e., 

 

                     
 

 

the graph looks like this: 

 
 

Using the imaginary component, 

 

                     
 

 

 
 

Combining the different possible numbers in some parametric examples: 

 

                       
 

                        
 

 

Notice that what can look like discontinuous ‘cusps’ in the projected side view are actually local 

maxima in the three dimensional helix view.  
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And, another exotic variation in two dimensions that is still a continuous three-dimensional 

helix. We are again choosing two of the possible numbers and graphing them against one 

another.     

 

                       
 

           
             

 

 

 
 

And one more: 
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Example 4: 

 

In this example of simply adding two helixes together with one having a different second level 

exponent, the result is a spiraling of the spiral: 

 

              
 
   

 

with orthogonal real (violet) and imaginary (red) components on the left, and helix (black) on 

the right, 

 

and with                                 :
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and with          : 

 
 

Example 5: 

 

In this example the base is the variable, the first level exponent is constant, and the second 

level exponent is also variable: 

 

         

 

 

The real values, FRP, in violet; and the imaginary values, TIP, in red; Interval          : 

 
     Animation 39 ’Base and 2nd Level Exponent Variable’ 

 

  

http://youtu.be/4KdReysvJAI
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Example 6: 

 

Here is a playful look at a variation of the equation from the end of section 7.31  2nd Level 

Exponents and the ‘x-base’:  a function for a symmetrical castle tower which we stand on end 

(negative end of the horizontal axis goes vertical), and rotate:  

 

               
 

 

With                   ,  and interval        : 

 
Animation 40 ‘Rotating Castle Tower Helix’ 

  

http://youtu.be/S35rSdGTGFk
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7.5  ‘Airy Type’  Spiral 

Second level exponents in a certain range on the usual exponential function will generate an 

asymptotic ‘Airy Type’ spiral. In other ranges for the second level exponent, helixes and 

expanding spirals result. 

 

Beginning with an arbitrary value on a normal 2D exponential graph, for example: 

 

                     

 

Graphing the FRP real values: 

 
Although it is very difficult to see, the graph is periodic for negative x. The first two real zeros 

are at:                             And, the first two imaginary zeros are at 
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To show the periodicity more clearly we simply raise the value of   to        .   

Real values in violet, imaginary values in red, and the RSIP side view in blue:   

 
 

 
Animation 41 ’Airy Type helix’ 

 

Adding a second term that is a reciprocal with various coefficients generates an Airy Type Spiral 

with Loops: 

          
        

 

s=1.574, a=8, b=-1, A=1, B=1.425 

http://youtu.be/eSx7zztem9I
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7.51  Airy Zeros  Approximations 

 

Many reasonable approximations, to within about two or three significant digits, for Airy 

function zeros can be made in a general way with: 

  

             

 

 
 

Using the following coefficients an interesting first approximation to the Airy function zeros 

may be made: 

 

                                      

 

What is  particularly interesting about this function is that both sets of zeros from Ai(x) and Bi(x) 

are included in the real values. 

 

FRP real values in blue, interval         : 

 
 

 
(b) 1 2 3 4 5 6 7 8 9 

http://mathworld.wolfram.com/AiryFunctionZeros.html
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Ai  -2.3381  -4.0880  -5.5206  -6.7867  

Bi -1.1737  -3.2711  -4.8307  -6.1699  -7.3768 

helix  -1.0974 -2.3053 -3.2555 -4.0866 -4.8429 -5.5461 -6.2088 -6.8391 -7.4427 
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What this also tells us is that there is a whole second set of zeros for the imaginary values: 

 
 

So, a second approach to approximating the Airy function zeros may be made by changing the 

base to e, finding new coefficients, and then combining the real values with the imaginary 

values by adding them and subtracting them. 

 

 

If the two graphs are added together, then, for  Re + Im  the following graph and 

approximations for Bi(x) result: 
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 1 2 3 4 5 6 7 

Bi     (b) -1.1737 -3.2711 -4.8307 -6.1699 -7.3768 -8.4920 -9.5381 

Helix  Re + Im -1.1657 -3.2639 -4.8227 -6.1668 -7.3820 -8.5076 -9.5657 

 

By adding a second pair of terms and adjusting coefficients, the first zero may be made as close 

as desired. 

 

If the two graphs are subtracted from each other, then there are two options:  

 

Re – Im and Im – Re 

 

The approximations to the zeros are equally close, but center either on the nearer zeros or the 

further zeros. The following graph and approximations result; In this approach the zeros 

approximation to Ai(x) is not asymptotic for positive     

 

                                                        

 

                                                          

 

             

                       

 

 

 
 

 1 2 3 4 5 6 

Ai   (b) -2.3381 -4.0880 -5.5206 -6.7867 -7.9441 -9.0227 

Helix Re - Im -2.2680 -4.0422 -5.4923 -6.7752 -7.9497 -9.0454 

Helix Im - Re -2.3205 -4.0820 -5.5265 -6.8063 -7.9784 -9.0724 

 

 

 

http://mathworld.wolfram.com/AiryFunctionZeros.html
http://mathworld.wolfram.com/AiryFunctionZeros.html
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7.6  ‘Bessel Type’ Spiral 

A slight variation of this approach allows for a ‘Bessel Type’ spiral. By adding the coefficient   to 

the exponent:   

 

                               

                                  

 

With           the FRP (real values in violet), and TIP (imaginary values in red): 

 
This helix, while having decaying amplitude values, does not have an asymptotic wavelength.  

An additional example, with         

 
 

 

 

  



A New Coordinate System for Complex Numbers 359 

greg ehmka, 2013 
 

7.61  Bessel Zeros Approximation 

The basic pattern for Bessel curves;  J0 and J1 can be generated by the real and imaginary values 

respectively of a helix, with first and second level exponents as follows:   

 

             

 

                      ,  Interval             

 
 

This then gives for FRP: 

 

               

 

 
 

With the following real values: 

 

 1 2 3 4 5 

J0   (a) 2.4048 5.5201 8.6357 11.7915 14.9309 

  Helix Re 2.1023 5.5943 8.8183 11.9005 14.8868 

 

http://mathworld.wolfram.com/BesselFunctionZeros.html
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And, in TIP: 

 

                

 

 
 

With the following imaginary values: 

 

 1 2 3 4 5 

J1   (a) 3.8317 7.0156 10.1735 13.3237 16.4706 

Helix Im 4.1434 7.2286 10.3735 13.4039 16.3517 

 

 

For the first derivatives  J’0 and  J’1;   

      
 

  
          

 

J’0 approximated by the real values:  

 

       
 

  
          

 

J’1 approximated by the imaginary values: 

 

        
 

  
          

 

 

  

http://mathworld.wolfram.com/BesselFunctionZeros.html


A New Coordinate System for Complex Numbers 362 

greg ehmka, 2013 
 

The real values approximating J’0 in graph and table form: 

 
 

 1 2 3 4 5 

J’0    (a) 3.8317 7.0156 10.1735 13.3237 16.4706 

Helix’ Re 3.6849 7.0310 10.1846 13.2209 16.1732 

 

 

And, the imaginary values approximating J’1 in graph and table form. This graph drops quickly 

near zero and is continuous at zero: 

 
 

 1 2 3 4 5 

J’1   (a) 1.8412 5.3314 8.5363 11.7060 14.8636 

Helix ‘ Im  1.8713 5.3904 8.6256 11.7149 14.7061 

 

 

 

  

http://mathworld.wolfram.com/BesselFunctionZeros.html
http://mathworld.wolfram.com/BesselFunctionZeros.html
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7.62  Variable Coefficient and Derivative Examples 

 

Using an equation that has, a) the variable   as a coefficient and b) certain larger second level 

exponents: 

 

               

 

            

 

FRP real values: 

 
 

With      real values in violet, imaginary values in red: 
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With    as a coefficient on a second derivative, and  .25  scaling factor to make the amplitudes 

smaller for easier viewing: 

 

         
  

   
           

 

                  

 

FRP in violet, TIP in red: 

 
 

Different exponents for  , including fractions and real numbers along with higher derivatives, 

modify the graph accordingly. 

 

Multiple terms with different bases will also make corresponding modifications of the basic 

Bessel curves.  
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7.63  A Cornucopia Function 

In another colorful example, if we use two terms of the Bessel Type with different coefficients, 

and then, add them and subtract them, as follows: 

 

                     

 

                     

 

                       

                         

 

In two dimensions, real values for the sum (in violet), real values for the difference (in grey), 

interval       : 
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And, imaginary values for the sum (in red), imaginary values for the difference (in grey): 

 
 

 

And in three dimensions, ‘Four Cornucopias  in 3Di’: 

 
Animation 42 ’Cornucopia Helix Functions’  

http://youtu.be/KFbDLABj3YQ
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7.7  Higher Level Exponents  

 

7.71  3rd Level exponents - Two Examples 

 

Example 1:     ‘A Hovering Arc Helix’ and its ‘Derivative Eight Helix’ 

 

 

Here is an equation similar to the example in section 7.2  Additional Levels of Exponents. This 

one has an asymptotic amplitude equal to     
, and a very slowly decreasing wavelength: 

 

      
                  

 

 

 

With                                          , the RSIP in blue on the right 

appears as a simple arc.  The corresponding helix is on the left. 
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The graph is periodic in both FRP (violet) and TIP (red), and appears to hover above the 

horizontal axis: 

 
 

The first derivative of this equation: 

 

     
 

  
  

                  
 

  

 

generates an interesting Eight Helix.  With     , the helix has constant amplitude. 
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With      the amplitude decreases, and with       the amplitude increases. 

 

With                , the Eight Helix has this decreasing amplitude. As   moves further 

away from   additional shape changes occur.  

 
 

Example 2:   

 

In an interesting variation of a hovering arc, the equation, 

 

                 

 

with             ans interval          gives the following:  
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Of the four possible numbers generated the real and imaginary parts of both the exponent and 

the whole term, parametrically graphing the following two:  

 

                         

 

                         

 

and then animating with             , in RSIP projection, gives: 

 
Animation 43 ‘Two Dimensional Radiated Wave’ 

 

 

7.72  4th Level Exponent Example 

 

Continuing the same idea  of parametrically exploring two of the many possible numbers which 

may be generated, here is an example with fourth level exponents: 

 

      
         

       
 
 

In violet,         
                     

 
 

In red,         
                     

 
 

  

http://youtu.be/XAqAuvdXn18
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With                interval         : 

 
 

And this three-dimensional graph which is using: 

 

      
                     

 
 

 

 
Animation 44 ’4th Level Exponent Helix’ 

http://youtu.be/-qQ1vkgsfc4
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8.0   Helix  and Spiral Antiderivatives 
 

8.1  First Level Exponents 

 

8.11  Helix Derivatives 

 

The first four derivatives of the helix: 

 

         

 

are: 

 

  
                   

 

  

   
                

 

  

   
                  

 

  

   
                 

 

These are equivalent to: 

  

   
          

 

and they are also equivalent to: 
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Each   represents a 
 

 
 rotation that effectively phase shifts the helix.  With interval:        

 
 

Since the phase shift   can be any value, this is what allows for the concept of ‘fractional 

derivatives’. 

  

 

8.12  Helix Antiderivatives 

 

In this ‘phase shift’ form: 

  

   
               

  
 

   

 

  can also be negative.  This results in a reverse rotation and therefore a negative phase shift 

which is the equivalent of an antiderivative of the helix.  E.g.       

 

   

    
                

  
 

           

 

and: 
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As with the derivative and positive rotation/phase shift, the antiderivative and negative 

rotation/phase shift also allows for the concept of ‘fractional antiderivatives’. 

 

See section 9.31  The Polynomial Morphing Function, for a discussion of potential polynomial 

fractional derivatives. 

 

 

 

  



A New Coordinate System for Complex Numbers 375 

greg ehmka, 2013 
 

8.2  First and Second level Exponents 

8.21  First Level Exponent Imaginary: 

 

One of the standard antiderivative forms for exponentials is: 

 

      
   

 

  
                

 

We can now extend this form to imaginary first level exponents, meaning to spirals and helixes: 

 

 

       
   

 

   
     

 

 

 

 The derivative is on the left, and the antiderivative is on the right, 

 

           
              

 

   
     

           

 
 

  

http://en.wikipedia.org/wiki/List_of_integrals_of_exponential_functions
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8.22  Second Level Exponent Real 

The constant second level exponent, 2 , in the previous example, can be extended to being a 

real number       which can take on most any value; but, as a practical matter, at least for 

graphing, a value higher than  2  or  3  produces an increasing frequency extremely fast. So, we 

have: 

       
   

 

   
     

 

 

 

          
   

 

       
       

 

 

For           , the derivative is on the left and the antiderivative is on the right, 
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Below for   negative, the derivative is, of course, not continuous at zero and positive  x  

increases upward, negative  x  increases in the negative    direction. The antiderivative is 

continuous at zero. 

 

             ( c  changes the frequency):  
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8.23  Second Level Exponent Complex 

 

The second level exponent may be made complex with the addition of an imaginary constant: 

 

                
   

 

          
          

 

 

 

 

First, the antiderivative        
 

          
          

  with 

 

      ,    ,        : 

Animation 45 ’Helix Antiderivative’  

http://youtu.be/cBwT-rOs-TQ
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And then, if this same equation is differentiated: 

 

     
 

  
 

 

          
          

    

 
Animation 46 ’Corresponding Helix Derivative’ 

 

  

http://youtu.be/2-O52Cus0mc
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8.24  First Level Exponent Complex 

 

 

               
    

 

           
           

 

 

With the derivative on the left, and the antiderivative on the right, the coefficients are:  
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9.0  4Di: Function Morphing 

9.1  4Di Function Input and Output alternatives 

 

A 4Di morphing/animation function is of the form:   

 

            

 

wherein ‘x’ is both input and output, whereas ‘w’ is input only and ungraphed.   

 

In another parametric form,   can be output only while   is input only and ungraphed. E.g. 

 

 

      

      

       
 = 

       
       
          

 

 

 
 

In this case, there is no animation even though there are still four variables. This is because   

plays only an output role. 

 

This brings up the concept of whether   (or any of several different possible variables) takes on 

an ‘output only’ roll or an ‘input and output’ role. For example, in section 4.65  Polynomial 

Nonlinearity, after applying the cubic formula,   became output only while   became both 

input and output. I.e.: 

 

      
    

       
 
               

 

For any given variable, the possibilities may be: 

 

I. input only and graphed 

II. input only and ungraphed (parametric) 
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III. output and graphed 

IV. output and ungraphed 

V. input and output graphed or ungraphed 

 

 

9.2  Morphing Concept 

 

The concept of a 4Di ‘morphing’ is a certain kind of animation in which the various places that 

the morphing might pause or stop, can often be regarded as separate functions themselves in 

3Di. In contrast, we might have something like a Motion or Displacement animation.  

 

Technically, they are both just animated functions but the difference is in that the morphing 

changes the function’s shape, whereas the displacement simply moves the graph around. 

 

For example:  

 

Morphing Function(in black):                     interval          

 

Displacement Function (in red):                interval         

 

The Morphing Function changes the shape, in this case from a parabola to a cubic curve, 

whereas the Displacement Function changes the location, in this case, along the    axis: 

 
Animation 47 ’4Di Function Morphing Concept’ 

http://youtu.be/CM18v4DAzF8
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9.3  4Di Morphing Function Examples 

9.31  The Polynomial Morphing Function 

 
Animation 48 ‘Polynomial Morphing Function’ 

 

The animation above is of the equation: 

 

                           

 

As   animates the graph and takes on integer values, the familiar straight line, parabola, cubic, 

and quartic result on the FRP. As   takes on intermediate values, the negative part of the graph 

rotates around the x-axis.  

 

http://youtu.be/yhO_RkW1dzE
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Additional terms can represent the polynomial more fully. Even integers for   produce ‘even 

functions’ and odd integers produce ‘odd functions’.   

 

E.g., with interval         

 

                     

 
Animation 49 ‘Polynomial Morphing Function 2’ 

 

If one of the exponents becomes less than  , there will be a cusp at zero; and if one of the 

exponents becomes negative, there will be a discontinuity at zero. 

 

 

 

  

http://youtu.be/tmSj81BaAMU
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9.32  Polynomial Fractional Derivatives 

 

There is a possibility that the concept of fractional derivatives (section 8.11  Helix Derivatives) 

can also be applied to polynomials.  In a typical polynomial: 

 

        

 

non-integer values for   result in a partial rotation of the negative   portion of the graph 

around the  -axis.  See section 9.31  The Polynomial Morphing Function.   

 

Then a usual polynomial first derivative would be: 

 

 

  
         

 

and a subsequent second derivative would be: 

 

  

   
              

 

Speculating a fractional derivative with        for example: 

 

    

     
            

 

the value of the coefficient   might logically lie between the coefficients of the first and second 

derivatives. I.e. 

 

           

 

If a way can be found to interpolate the value of   the notion of a fractional polynomial 

derivative defined in this way may be of use. 
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9.33  Exponential Morphing  

 

            

 

With         and       , the graph shows changing shapes for negative   as   takes 

on certain values and ranges of values. Positive   is always exponential. The pitch is 

continuously changing as well. 

 

       the usual exponential graph 

         asymptotic spiral 

          helix 

         expanding spiral, increasing amplitude 

      modified exponential 

         expanding spiral, decreasing amplitude 

        helix 

          asymptotic spiral 

      modified exponential 
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Animation 50 ‘Exponential Morphing’ 

9.34  Periodic Exponential Morphing 

 

By adding the coefficient   to the exponent, and placing an animation variable   as an exponent 

to  , the graph will be periodic. As   takes on the integer values          ….,     will take on 

the values          , and repeat. And then, in this case, the graph will cycle from the 

exponential, to the helix, to the negative exponential, to the negative helix, and repeat.   

Intermediate values for   will result in spirals for the graph.   

 

          

 

Intervals                    : 

http://youtu.be/3q2rYSocux0
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Animation 51 ‘Periodic Exponential Morphing’ 

 

 

  

http://youtu.be/WHXFTL7c1_oi
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9.35  Parabolic Morphing  

 

If an animation variable   is placed as the exponent on a parabola, e.g., 

 

               

 

the vertex of the parabola will rotate and change shape. For      , conic nonlinear roots  

graphs will appear; and, for negative  , familiar inverse graphs will appear with the center 

segment rotating inside the discontinuities. 

 

With intervals                    : 

 
Animation 52 ‘Parabolic Morphing’ 

  

http://youtu.be/t7B47Vz42LY
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9.36  Lissajous Morphing 

 

In a variation of the two-dimensional Lissajous curve, rather than graphing two different 

frequencies perpendicular to each other, the real values of a function and the imaginary values 

of its reciprocal function are graphed perpendicular to one another. The frequencies will be the 

same but, the amplitudes, phase relationship, and development (CCW for the function and CW 

for its reciprocal) will be different. And then, the animation variable changes the frequency for 

both. 

 

                       
 

                      
 

 
  

  

 

                   

 

The coefficient   is necessary for the second term since taking the imaginary value of a function 

converts it to a real number. This allows the expression to be in one equation. Alternatively, 

        can be expressed parametrically.  

 

The equation graphs a helix with changing ‘elliptical eccentricity’ as a function of changing 

frequency. The reciprocal nature of the two terms graphed perpendicular to each other, 

determines the changing eccentricity as one gets large and the other gets small.  In two 

dimensions, there is a resemblance to a galactic disk. 

 

Intervals                      : 

 
Animation 53 ‘Lissajous Morphing 2D’ 

 

http://youtu.be/WruanMxJWB8
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In three dimensions the increasing ‘elliptic eccentricity’ of the helix is shown clearly: 

 
Animation 54 ‘Lissajous Morphing 3Di’ 

 

 

9.37 2nd  Derivative Morphing 

In a more complicated example, here is an interesting application of the morphing idea. The 

equation is the second derivative of an ‘Airy Type’ helix, ostensibly occurring over time. The 

graph appears to model in successive stages, turbulence, projectile resistance, and impact.  

What is most interesting, is that the region of highest amplitude of the wave is in the middle, 

and moves forward. 

 

For        the amplitude is near zero, around      grows to a high of around     around 

     ; and is below   again, at         At      the rise and fall of the amplitude occurs 

below         And at      below         

 

     
  

  
            

  
 
 

 
 

 

 

      

http://youtu.be/BNtrAiGhkJ0
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Animation 55 ‘Second Derivative Morphing 2D’ 

 

And in three dimensions: (The graphing software is a little challenged by this one; so, the 

  interval is shortened.)  

Interval                           : 

 

http://youtu.be/CXk21fFDRDg
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Animation 56 ‘Second Derivative Morphing 3Di’ 

9.38  Morphing Skewed Spirals 

 

Spirals can be skewed and morphed using multiple terms, different exponents or derivatives.  A 

typical equiangular spiral using the   rotator from section 9.39  A Simple Rotator:  

 

                  

 

In RSIP with interval          : 

 
 

  

http://youtu.be/DgCV6ePd0ks
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This can be skewed with:  

 

                
                 

 

 
 

And/or further skewed with derivatives: 
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And, then morphed with         : 

  
Animation 57 ‘Morphing Skewed Spirals 2D’ 

 

 
Animation 58 ‘Morphing Skewed Spirals 3Di’ 

  

http://youtu.be/D_hI-tcCFnQ
http://youtu.be/ZYinMXSEGfk
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9.39  A Simple Rotator 

Similar to section 9.34  Periodic Exponential Morphing, where periodic morphing of the  -base 

results from using     as a coefficient in the exponent, this ‘periodic coefficient’ can be used to 

rotate any function around the   axis. 

 

Taking a somewhat exotic curve in 3Di side view projection: 

 

           

 

 

With               : 

 
 

and, adding the ‘periodic coefficient’, making it 4Di: 

 

             

 

 

allows the curve to continuously rotate or pause anywhere depending on    

 

Here, the interval is:        : 

Animation 59 ‘Simple Periodic Rotation Coefficient’ 

http://youtu.be/x5oOaudVUos
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Notice that here, in the above graph, the periodic coefficient, or simple rotator, is used as both 

coefficient and as second level exponent. This means it can be used as an ‘animator’, with an 

animation variable   or to determine a circular geometry with   as input. 

 

This periodic coefficient, or simple rotator, with animation variable    i.e.       , is an interesting 

entity – almost acting as an operator. It is, of course, equivalent to    
   

   , but,  somewhat 

easier to work with. Used as a coefficient on a function, it can provide rotation around the   

axis or phase shift (black object).  And, used as an exponent, can provide function morphing: in 

this case, between the exponential graph and the helix graph with equiangular spirals in 

between (red object). 

 

             

                              

 

 

            

                                 

 

Intervals                         : 
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Animation 60 ‘Simple Periodic Rotation Coefficient 2’ 

 

 

When the Periodic Coefficient is used with a constant, it provides simple circular rotation in the 

RSIP. 

 

                             

                                  

 

(The object being rotated is a default object supplied by the software.) After Closed Surfaces 

are covered in section 12.2  Closed Surfaces,  the objects themselves can become part of the 

equation. 

 
Animation 61 ‘Simple Periodic Rotation Coefficient with a Constant 

 

 

9.40  The Equiangular Spiral and Cardioid Motion 

 

When the periodic coefficient is used as an exponent, a Cardioid Type orbit and motion result: 

 

                                       

                                      

http://youtu.be/BADPjFiMvlQ
http://youtu.be/0Ep4B_5be9s
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In RSIP: 

 
 

The object that we are calling a ‘Cardioid’ (black), isn’t quite a cardioid (red), and not quite a 

Cardioid Petal (violet), and not quite Cayley’s sextic (blue).   

 

 
 

It has, however an extraordinary property; that being, it is the path of a point on an equiangular 

spiral as the spiral morphs. 

 

If we take an  -axis interval,        ,  and choose several points,   ,  on that interval. And 

then, graph this type of Cardioid for each point: 
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in two dimensions, RSIP, we have: 

 
 

If we then add the equiangular spiral with a specific value for     
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The points of intersection between the equiangular spiral and the Cardioid type orbits will 

follow the Cardioid orbits. This form of equiangular spiral is not continuous at zero.  
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So, with interval       : 

 
Animation 62 ‘Equiangular Spiral with Cardioid Orbits 2D’ 

 

Notice that the points which are inverses, i.e.         ,  orbit half a cycle (2 in the   cycle of 4) 

out of phase with the integer points. 

 

  

http://youtu.be/PZtr8gCGWAU
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In 3Di: 

  
Animation 63 ‘Equiangular Spiral with Cardioid Orbits 3Di’ 

 

These constructions are with     which is not continuous at zero for all values of  , but in two 

dimensions is the same equiangular spiral as       which is continuous at zero for all values of 

   If, alternatively,      is used, the exact same orbits will occur except at different locations, 

i.e., different values for    Additionally, the two different types of equiangular spiral in three 

dimensions have very different ways that the wavelength varies.  

  

http://youtu.be/cjAV9cTtVTw
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10.0  4Dii: Helix Morphing  
In 4Di morphing there are three real variables and one imaginary variable:   

 

            

 

The morphing variable can also be imaginary:   

 

             

 

in which case the coordinates become 4Dii: two real variables and two imaginary variables.  

There are different forms of 4Dii. See section 11.1  Functions in 4Dii,  for discussion. 

 

The black helix function below is: 

               

 

with:      and intervals: 

 

                       

 

 

The blue object is the side view (RSIP) of the helix. And, the red object (above the blue object) is 

the side view of the resulting helix after performing the following integral operation on the 

helix: 
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Notice, in general that the blue object has loops whereas the red object has cusps. Also notice, 

at various places, the associated curves (evolute, pedal, etc.), show relationships between the 

two.   For example, the one shown in the starting picture of the Tricuspoid and Trifolium for  

       

Animation 64 ‘Helix Morphing’ 

 

http://youtu.be/N6CEiAqkaqY
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11.0  4Dii: Algebraic Forms 
 

11.1  Functions in 4Dii 

The types of functions covered so far have been the following: 

 

i. 3Di – two real variables and one imaginary variable: 

 

          

 

ii. 4Di morphing – three real variables and one imaginary variable:   

 

            

 

iii. 4Dii morphing – two real variables and two imaginary variables: 

 

             

 

In this section we consider two more versions of 4Dii.   

 

 

i.              

 

ii.              

 

The first has an algebraic relationship between the two input variables. It is that of a complex 

number where the imaginary part of the input is an angle. This means that there is a single 

complex number as input and a single complex number as output. This will be referred to as 

line-angle input. 

 

The second also has an algebraic relationship between the two variables. But, in this case, the 

input is that of a ‘complex regional domain’, rather than the line-angle input of the first one. A 

complex regional domain is essentially a rectangular complex area with length   and width      

or the reverse, length    and width    See section 12.4  Complex Regional Input 
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Also see section 13.1  Observable and Embedded Dimensions, for further discussion of function 

types and input alternatives. 

 

 

 

 

 

11.2  A New Geometry of Natural logarithms 

 

11.21  Spira Mirabilis Again 

 

If the usual Euler Helix: 

                    

 

has an additional real coefficient in the exponent: 

 

                        

 

the result is an exponential increase in the helix’s amplitude: 

 
 

And, if the constant   and the variable   exchange places: 

 

                  

 

the result is a specific state of rotation of the exponential graph: 
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Combining the helix with the exponential, meaning the variable   is applied to both parts of the 

exponent, e.g. the complex number         

 

                    

 

results in the exponentially spiraling helix that is the Complex Exponential form for the 

equiangular spiral from section 3.62  The ‘Complex Exponential’ Form The curvature is 

determined by  :  
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11.22  The Four Coordinate Complex Exp/Log Function 

 

The above equiangular spiral uses the same variable   on both the real part and the imaginary 

part of the exponent. If we let   be the real part, and the imaginary rotational part be    

  

           

 

then, this exponential function and its inverse, the complex logarithmic function: 

 

              

 

will be seen to have the striking and wonderful relationship of a fully correlated four coordinate 

system!   

            

 

In which: 

- The real input   is on the horizontal axis. 

- The imaginary input    will be the specific rotation; the value of which is 

the rotation of the graph. 

- The real output   is on the vertical axis. 

- And the imaginary output is on the depth axis. 

 

A point on this graph with input      : 
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will have the coordinates: 

 

                                   

 

related by: 

 

           

or: 

              

 

as will be the case for any point on the graph with any rotation. The fourth coordinate    

provides the means whereby the equation remains a function, even with two or more points on 

the same vertical line – which would ordinarily disqualify the equation as a function.  

 

Additionally, the rotations of the graph still make the natural log function multi-valued, so, 

considerations relative to Principal Value are still needed.  

 

 

 

11.23  The Four Coordinate Complex Exp/Log Surface 

Further, using the version of 4Dii: 

 

             

 

provides a complex regional domain as input rather than the line-angle input. This form of input 

allows the function to have a surface by, in effect, graphing all values of the rotation at once.  

 

In this case the coordinates are: 

 

                            

So: 

           

and: 

              

 

with Principal Value considerations still playing a role for values of   . 
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Graphing   on the horizontal and intervals,                          ,  results in the 

surface: 
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Note that in this context Euler’s ‘famous five’ identity: 

 

        

 

specifies a point in 4Dii coordinates!  Meaning that if we define four observable dimensions as 

horizontal, vertical, depth, rotation, then: 

  

                      

 

and if we slightly rearrange Euler’s identity to: 

 

            

 

then it will be in the four coordinate form: 

 

           

 

and reduce to: 

       

 

and so the four coordinates become: 

 

                                   

 

and specify a point, (red ball), on the Exp/Ln surface: 
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Going back to the surface itself,          are graphed along the vertical and depth axes 

respectively. But, there is an option as to whether these two outputs are graphed against the 

real or the imaginary part of the input   or   on the horizontal   axis. Graphing them against   

results in the surface object above.  Meaning: 

 

             

           

 

Graphing them against    the imaginary part of       , results in a different surface object.  

See section 13.0  4Dii:  Object-Wave  Duality Surfaces.  Also see section 12.3  Open Surfaces  for 

more open surfaces. 

 

  



A New Coordinate System for Complex Numbers 421 

greg ehmka, 2013 
 

11.3  The Imaginary Logarithmic Surface 

 

As noted in section 6.51  The  -                , the  -base exponential graph,     ,  also has a 

rotation associated with it when given a complex exponent,   , which in that case is real. 

 

Also, in section 6.44   Imaginary Wavelength Interpretation, the  -base helix,    ,  was seen to 

have an imaginary wavelength. Bringing these together, the  -base exponential graph with a 

complex exponent was defined to have an orientation along the depth axis and a rotation that 

is real. This suggests the same modification to 4Dii as we made there to 3Di. If the  -base 

exponential graph with rotation, meaning having a complex exponent, is oriented along the 

depth axis, then the imaginary output must fall along the   axis. Then, as in section 6.52  

Rotating Exponentials: 

 

           

 

 
Animation 65 ‘i-base Exponential Rotation’ 

 

This says that the complex output has real part, which is graphed on vertical ‘y’;  and imaginary 

part, which is graphed on the horizontal  ‘x’, which makes   imaginary. Then: 

 

           

 

http://youtu.be/uC8UHrm5EBM
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provides imaginary logarithms by the change of base equation: 

 

                     
        

   
      

And then, there is a four coordinate function just as with the natural logarithms, but, with the 

following changes: 

 

                                               

 

                                               

 

 

Switching to       , complex regional input for the surfaces, the   base logarithmic surface 

uses   for the horizontal, or   axis, and is oriented along the   axis, meaning that the horizontal 

axis is the input. The   base logarithmic surface, in contrast, is oriented along the depth or    

axis, meaning that the depth axis is the input.    

 

  base: 

    

           

 

  base:  

    

           

 

And so, with intervals                     ,  the imaginary logarithmic surface is: 
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And, any point on the surface has coordinates: 

 

                                   

 

related by: 

 

           

 

or: 

               

 

Noting again that for the   base, the real part of the exponent is the rotation. With   using line-

angle input, or with   using complex regional input, imaginary logs (like natural logs) are multi-

valued. The period of rotation for the   base is    So, if   or   are greater than  , the same 

Principal Value considerations as with natural logs are needed. 

 

As with the   base, there is an option to graph the output with either of the input variables 

along the    axis. This will be explored further in section 13.0  4Dii:  Object-Wave  Duality 

Surfaces .  
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11.4  More Exponential/Logarithmic  Surfaces 

 

The concept of logarithmic surfaces can be extended to a wide range of bases and functions in 

the exponents. In  a general way, these can be expressed in either exponential form or 

logarithmic form. I.e.: 

 

                 

 

           
        

   
            

 

And then, making provision for whether the base is real or imaginary and is therefore oriented 

along the   or    axis as well as considering Principal Values.  

 

Example One: 

 

As we’ve seen, the imaginary and natural logarithmic surfaces are asymptotic to the input axis.   

Here is an   base example of a surface being asymptotic to a cylinder:  

 

             
 

  

The depth input axis is graphed with   values and the intervals are:   
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Example Two: 

 

A complex base example: 

 

               

 

And, therefore: 

 

               
        

       
      

 

Input   values along the horizontal. Intervals                        : 

 
 

The ‘break’ in the graph is a morph of the exp/natural log surface graph depending on the value 

of  : 
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Example Three: 

 

The concept will also work for variable bases.  I.e.: 

 

           

 

and, ostensibly: 

 

           
        

   
      

 

But, as might be expected, the period moves around with the value of    and so, there will be 

varying principal values. 

 

Input:    values on the horizontal. Intervals                    : 
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12.0  4Dii:  Surfaces  
 

12.1  Surfacing a Function 

In the previous examples of exponential/logarithmic functions, using line-angle input: 

 

           

 

the angle part of the input provides a rotation of the graph. If used with a second level 

exponent there is, in addition, a morphing of the function.  For example: 

 

                          

 

Intervals                          : 

 
Animation 66 ‘Morphing and Rotating an Exponential’ 

 

Switching to complex regional domain input with the same equation: 

 

                          

 

With intervals,                        , the variable  , in effect, graphs all of the 

values of   at once, and the following surface results: 

http://youtu.be/IkSKRv_sLJU
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The surfacing operator       can be applied to other functions. I.e.: 

  

             

 

For example, if the function is a polynomial: 
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Applying the surface operator: 

 

                  

 

Intervals                     : 

 
 

 

12.11  Inverse Functions 

 

Finding         with inverse functions is possible in many cases, generally by taking logs of 

both sides, setting real and imaginary parts equal to one another, and solving for         

where possible: 

 

             

 

                     

 

               

 

                      

 

The steps for the sphere are in the next section. 
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12.2  Closed Surfaces 

12.21  The Sphere Surface Function 

 

Returning to our original conic from section 2.6  Conics in 3Di, and this time arranging it so that 

the circle falls on the FRP, rather than the hyperbola; and then, solving for    

 

         
 
  

 

 
 

taking just the upper half circle function, and, adjusting the interval to include only the circle 

portion and not the hyperbola portion: 

 

 
 

replacing   with  : 
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and, applying the surface operator: 

 

             

 

              
 
  

 

results in a four coordinate function             for the surface of a sphere! 

 

Intervals                       :

 
 

To find the sphere surface inverse functions: 

 

i. take the natural logs of both sides, 

ii. set the real and imaginary parts equal to each other, 

iii. and, solve for          
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Due to the symmetry of the sphere, for a given         there will be two values of    And, 

these are given by the two square roots: 

 

                                 

 
 

 

 

For a radius of the sphere other than    

 

               
 
  

 

          
                   

     

 
 

 

 

 

To include only the sphere, the interval for   should be: 

 

       

 

Extending the interval for   outside the boundary of the sphere results in hyperboloid 

extensions.  With        : 

 
 

To find inverses on these extensions we would begin with the equation of the hyperbola, rather 

than the equation of the ellipse. I.e.: 
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In effect, beginning with either the ellipse equation or the hyperbola equation specifies 

whether the ellipse is ‘real’ and the hyperbola ‘imaginary’, or the reverse. 

 

 

 

12.22  The Cube Surface Function 

 

If we take the geometry function,    of the half circle, above, and raise the exponent,  i.e.: 

 

          
 
  

 

the half circle approaches the shape of a square: 

 
 

And then, set a surface operator,    such that it generates a square: 
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Combining the geometry function,    with the surface operator function,  , will result in a 

surface function for a cube: 

 

        

 

                    

 

 
 

Technically, the object is more of a ‘cube lozenge’ since the corners and edges will always have 

some tiny amount of curve to them and the end surfaces will always have some tiny amount of 

slope to them. But, with refinements, it likely can be made as close as desired. 
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12.23  Lozenges, Barrels and Pointed Cylinders 

 

“Chubby Pentagon Lozenge” 

 
 

 

 

Using the same principle as with helix functions we can define a ‘surface operator’,     to have 

more than one term – for example, a reciprocal sum: 

 

               

       

 

Applying this to the equation of a half circle: 

 

            
 
  

 

results in a vast array of possible closed surfaces. In a general way, the integers,          

determine the number of cusps or loops, and         determine the shape of the cusps or 

loops. E.g.,  with                   : 
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Animation 67 ‘Triangular Lozenge’ 

 

With                   : 

 
 

And, with                   (Hexagon ‘Saturn’ Lozenge): 

http://youtu.be/ODF7MVTq07g
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Additionally, if we define      to be the ‘geometry function’,      changes to   add further 

possibilities. For example, if the second exponent   takes on different values: 

 

          

 

        

 

  is the surface operator function, and   is the ‘geometry function’. 

 

With                                        an elliptical lozenge with sharper 

boundaries results: 
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Further possibilities result by varying either the constant,  , or the first exponent,  : 

 

           

 

Keeping the other coefficients the same, with:                  the lozenge opens on one 

side: 

 
 

And, with                , the lozenge opens on both sides: 

  
 

Adjusting   determines the size of the opening. With   back to   : 
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Adding another cusp with      and adjusting         results in  a triangular hole in a 

triangular lozenge: 

 
 

Going back to the sphere, with            : 

 
 

And, closing the hole with       Then, changing the second exponent to         we have a 

closed ended barrel: 
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Changing the horizontal interval to           and matching   to it with       and then 

with      we have a pointed cylinder: 
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12.3  Open Surfaces 

12.31  Constant, Exponential and Polynomial Surfaces 

 

What we are calling the surface operator function,     

 

               

 

can be applied to many different ‘geometry’ functions,  . If   is a constant: 

 

    

 

a simple cylinder results that can be made to have various shapes.   

 

With intervals            

                                         : 

 
 

If   is the exponential function, it can also be made to have different shapes:  
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Intervals                          

                             : 

 
 

Going back to line-angle input on an exponential graph: 

 

                      

 

With the same coefficients as for the surface, the rotating exponential graph will outline the 

square surface.  The movement of this square rotating exponential is interesting.  

 

In addition to the path of a point (the grey ball on the exponential graph that will trace out a 

square) the actual rotation of the graph undergoes changes in its rotational velocity.  It 

decelerates at the corners of the square and accelerates along the sides of the square. 
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Animation 68 ‘Square Rotating Exponential’ 

  

  can also be a polynomial. For a typical cubic: 

 

              

 

Interval          

 
 

For just a simple circular surface: 

 

               

http://youtu.be/rz2JkMdDXHk
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And, a more complicated ‘Cardioid Limacon Cubic Surface’ still using: 

 

              

               

        

 

                   : 

 
Animation 69 ‘Cardioid Limacon Cubic Surface’ 

 

 

http://youtu.be/8Ym-cDcb-6A
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An exponential function can be added to the cubic: 

 

                

 

Intervals                          

                                : 

 
Animation 70 ‘Seven Loop Exponential Cubic Surface’ 

 

 

  

http://youtu.be/8CBxYGnETf8
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12.4  Complex Regional Input 

What we are calling a  complex regional domain is a simple complex rectangular area with 

dimensions          (violet).   

 

          

 

This area changes shape with an exponent, e.g.,     (blue), and     (yellow). And, for 

various exponents assumes various sizes and shapes (red animation). 

 

             

 

In two dimensions, with intervals                      : 

 
Animation 71 ‘Simple Complex Area’ 

http://youtu.be/NYFK7rSrcJ4
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In three dimensions, for example, graphing both of the square root functions of a complex 

variable: 

 

    

           
 
  

 

Interval to          : 

 
 

 

 

12.41  Cornu Spiral/Fresnel Surface 

 

A flat or linear surface, rather than a circular one, is also possible. Using a Fresnel Integral, with 

the   interval as the limits of integration: 
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Intervals                         

 
 

Going back to a circular surface, with   as the limits of integration: 
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Placing the surfacing operator itself as the limit of integration generates a cylindrical Nephroid 

surface. 

 

            
    

   

 

 

       

 

 
 

Modifying the exponent on   will determine the number of ‘circular loops’. 
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13.0  4Dii:  Object-Wave  Duality Surfaces  

13.1  Observable and Embedded Dimensions 

As stated in section   
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1.1 General Characteristics, a dimension is defined essentially as a variable and functions are 

categorized by the number of dimensions/variables that they use. Further, the functions are 

categorized by the number of real, versus imaginary, variables that they are using.  And so, the 

notations, 3Di, 4Dii, 5Dii, are useful designations of groups of functions. 

 

In our human perceptions we also have an experience of dimension that is more like direction 

and uses the words, horizontal, vertical, depth etc. The rationale behind equating a variable 

with a dimension comes into being at the time when there is an  intention to make 

measurements along those or other ‘directions’. 

 

What we have been using so far in the graphs are: 

 

i. the horizontal variable 

ii. the vertical variable 

iii. the depth variable 

iv. the animation variable 

v. the parametric variable(s) 

 

Additionally, sometimes the parametric variables are graphed, and sometimes not.  

 

I’ve, personally found useful the realization that there are essentially only four graphed, or 

observable, dimensions (first four above); and theoretically there could be many ungraphed, 

unobserved or embedded dimensions. This terminology provides additional information as to 

what a particular ‘parameter’ is doing, and so that is the rationale for using it. 

 

In this section functions of the form: 

 

             

 

are explored with         alternating between the observable and the embedded roles. What 

is meant by object-wave duality is that when   is observable and   is embedded, a surface 

‘object’ appears; and when   is observable and   is embedded, a surface ‘wave’ (helicoid) 

appears. Sometimes their roles are reversed. Also, in some cases, and in later sections, neither 

are playing an observable role, meaning that the observable dimensions are all functions of 

embedded ones.      
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13.2  Objects and Their Associated Waves 

 

13.21  The Sphere Surface 

 

From section 12.21  The Sphere Surface Function: 

              
 
  

 

 
 

uses   on the horizontal or   axis. Switching the horizontal axis to     , and using the same 

intervals                        results in a Helicoid wave. 

 
 

The   interval determines the overall length of the wave.   
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Extending it to         : 

 
 

And, the   interval determines the amplitude. With these types of waves there is what we 

could call an ‘inner amplitude’, which extends from the helix amplitude at    toward the  -axis 

and an ‘outer amplitude’, which extends from the helix amplitude at    outward. The negative   

interval determines the inner amplitude surface, and the positive   interval determines the 

outer amplitude surface. See section 13.31  Inner, Outer and Variable  Amplitude 

  

For example, with              
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13.22  The Reciprocal Sphere Surface 

 

With the same intervals as for the sphere:                     , the reciprocal of the 

sphere surface, 

 

    

 

               
 
  

  

 

 

is similar to a catenoid except that it is asymptotic and, therefore, not continuous at       
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Switching the horizontal axis to      the reciprocal sphere generates its own wave. 

 
 

As before,   determines overall length; and  , staying inside the discontinuities, determines the 

amplitude, in this case, with the outer limit, determining outer amplitude that can increase 

without bound, and the lower limit determining inner amplitude around the circular opening.   

 

With                       : 
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13.23  The Exp/Natural Log Surface 

 

As in section 11.23  The Four Coordinate Complex Exp/Log Surface:  

 

           

 

With                       : 
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When   is switched to   with these same intervals: 

 
 

As before,   determines the overall length. Extending             : 

 
 

As before, the amplitude, determined by  , has an outer amplitude determined exponentially 

by positive    and an inner amplitude that approaches zero but does not reach it, determined 

by negative      
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In the case where   has no interval and is equal to zero, the helicoid becomes a helix. So, the 

two amplitudes are: 
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E.g.,           

 
 

And,         

 
 

So this type of helicoid always has a hole in it around the   axis. 
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13.24  Polynomial Surface 

 

From section 12.31  Constant, Exponential and Polynomial Surfaces, a cubic polynomial with a 

surface: 

 

                    

 

in object mode with intervals                      
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In wave mode,      results in a kind of double wave with the higher amplitude determined by 

the    part of the interval, and the lower amplitude determined by the –   lower part of the 

interval.  The   interval is extended to      
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13.25  Cardioid Surface 

 

In the case of an   base surface function,   generates the object mode and   the wave mode. 
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13.3  Helicoids 

13.31  Inner, Outer and Variable  Amplitude 

 

Looking more closely at the ‘helicoid with hole’, in wave mode, i.e.,        if      then the 

surface helicoid is equivalent to the basic Euler helix. Meaning that: 

 

    

            

    

 

is equivalent to: 

         

 

 
 

If we then add a small positive   interval,        , the outer amplitude shows up: 
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Or, with a small negative   interval,           the inner amplitude shows up: 

 
 

The frequency is altered with a coefficient,    on the exponent: 

 

    

               

    

 

 
 

A variable amplitude wave results by making the base complex with the addition of an 

imaginary constant. 
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The above helicoid variable amplitude, with the function in ‘wave mode’, is reflected below in a 

‘nested variable amplitude’ when the function is in ‘object mode’. 

 

Adjusting,                   , for a better view: 
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13.32  Geometric Helicoids 

In wave mode, returning the frequency to    adding the reciprocal sum second term, and 

adjusting amplitude coefficients and   interval: 

 

                                  

  

                       

 

results in an elliptic helicoid: 

 
 

Returning the base to real only, with      adding frequency coefficients,          and 

adjusting amplitude coefficients          results in a ‘helitricoid’. 
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The geometric shape can be placed either on the inner amplitude or the outer amplitude. With 

                           the square is on the outer amplitude: 
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And, with         the square is on the inner amplitude: 
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13.4  A ‘Transverse Wave’ Surface 

 

As might be imagined, venturing into the area of integral operations as surfacing operators 

brings forth an array of interesting puzzles requiring much analysis. So, here are just two wave 

forms using an integral operation as a surface operator on the basic half-circle function. 

 

           
 
       

 

 

 

 

Intervals                    

 
 

And next, changing only the lower limit of integration with the same intervals. 

 

           
 
       

 

  

 

 

 
 

As usual,   determines the amplitude, and seems to change direction from horizontal to 

vertical as   transitions through    Additionally, the transition seems to involve the inner 

amplitude on one side, and the outer amplitude on the other side.  
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14.0  5Dii:  Circular Surface Functions 
 

In 5Dii, the variable   becomes a parametric ‘output only’ giving three output, or observable, 

dimensions along with two input, or embedded, dimensions.     therefore, becomes a function 

of        along with   and      generating a parametric system: 

  

  5Dii   

         

         

          
 

14.1  Circular Helix 

 

The basic Euler Helix with frequency  : 

 

          

     

 
 

can be made circular by arranging three functions: a geometry function, an orbiting function, 

and a ‘rotational function’; and then, taking the various real and imaginary parts of each in 

different ways, to give the three output axes. 

 

In this case, the geometry function is a simple circle with a frequency: 

 

        

 

The orbiting function is also a simple circle: 

 

         



A New Coordinate System for Complex Numbers 476 

greg ehmka, 2013 
 

                       

 

  



A New Coordinate System for Complex Numbers 477 

greg ehmka, 2013 
 

If these two are graphed in the following way: 

 

             
       

              
 

 

the helix goes in a circle, but the movement of the two circular functions, geometry and orbit, 

are not properly coordinated resulting in: 
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So, a rotator function is needed to coordinate the two movements: 

 

      

 

And, this is applied to the imaginary component of the geometry function. 

 

               
       

                
 

 

And then, the real and imaginary components of this are applied to the          axes 

respectively. The vertical axis,    is not effected by adding an orbit to the helix: 

 

                      

       

                       
 

 

And, the circular helix results: 
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With various values of the radius     in the orbit function, the usual torus shapes are formed:   

 

the sphere with       the spindle torus with     , and the circular helix with      

 
Animation 72 ‘Circular Helix Torus Variations’ 

 

  

http://youtu.be/l2eoA1je5Bc
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As with the other helix functions, various shapes can be applied to the Geometry and Orbiting 

functions using reciprocal sums, frequency coefficients, and amplitude adjustments.   

  
Animation 73 ‘Circular Helix Shapes’ 

 

  

http://youtu.be/NY6B3RHq9UM
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14.2  Circular Helicoid 

 

To place a surface on the circular helix and generate a circular helicoid, all that’s needed is to 

convert the three functions: 

 

                      

       

                       
 

 

       

 

         

                       

 

      

 

to complex regional domain input, and add a   interval – in this case,  an inner amplitude: 
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The helix outlines the helicoid in red: 
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14.3  Geometric Torus Surfaces 

 

The geometric torus surfaces functions on the cover are built in the same basic way as the 

helicoid with variations, using the same parametric functions. For example, a triangular 

geometry in a square orbit, with the geometry function in   base, and the orbit and rotator 

functions in   base:  

 

                      

       

                       
 

 

 

              

 

            

 

     

 

                  

                             

               

 

The   interval is     for cutaway, and     for complete: 

 
 

By adjusting coefficients, any number of cusps, loops, Trochoid and Cycloid shapes are possible. 
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with:       : 

 
 

With                     
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14.4  Circular ‘Transverse Wave’ Surfaces 

 

Here is the same basic principle applied to the two waveforms from section 13.4  A ‘Transverse 

Wave’ Surface: 
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And: 
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15.0  6Dii: Surfaces in Motion  
 

Surface functions in 6Dii are of the form: 

 

               

 

And,   is generally ‘output only’ and specified parametrically.  

 

    6Dii   

           

           

            
 

 

We now have enough variables to generate our own closed surfaces and put them in motion.  

The parametric functions specifying the observable dimensions will include geometry functions, 

surfacing functions, and trajectory functions. 

 

15.1  Objects in Polynomial Space Trajectories  

 

In section  

5.1 An Intuitive Model 
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Complex Slope 

Using the animation above, visualize an aircraft taxiing down the runway prior to take-off. Our 

view is off to the side, with the taxiing aircraft moving from left to right. And, let’s say that 

exactly to the right is a heading of zero. Exactly in front of us, the aircraft reaches take-off speed 

and rotates to begin its climb. This is the violet ball at the origin. The violet line is the aircraft’s 

climb while maintaining the same heading. This is real slope and zero imaginary slope, 

sometimes referred to as ‘rise over run.’ 

 

Next, at the black ball, the aircraft reaches cruising altitude and levels off while maintaining the 

same heading. And, the black line shows its flight path with zero real slope and zero imaginary 

slope. 

 

Next, at the red ball, the aircraft executes a 45-degree turn to the left while maintaining 

altitude. The red line shows its flight path with imaginary slope and zero real slope. This could 

be referred to as ‘glide over run.’ 
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And finally, while maintaining that heading, at the blue ball, it begins another climb. The blue 

line then shows both real slope, which is the climb, and imaginary slope, which is the heading 

other than zero. So, in flight path terms, complex slope is the sum of climb/descent plus 

heading. 

 

 

5.2 Real, Imaginary and Complex Slope 

 

Removing the idea of an aircraft, since it has a direction and motion, and just focusing on the 

line segments, real only slope of a line in three dimensions is: 
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while imaginary only slope is: 

 
 

Real only slope appears in the front view (FRP) and imaginary only slope appears in the top view 

(TIP). 

 

Real only slope has the usual slope-intercept equation of a line: 

 

                              

 

and imaginary only slope would then have a corresponding slope-intercept equation of a line: 

 

                                     

 

In graphing terms, real only slope is rise over run and imaginary slope would be glide over run. 

Either or both can be positive, negative or zero.  Complex slope combines the two and is ‘rise 

plus glide over run’.  The two equations can be combined to give: 

 

                       

 

Algebraically, complex slope extends standard slope by adding in the imaginary number for the 

glide.  Since there are two slopes: 
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And the calculation of complex slope becomes: 

 

       
                 

     
 

 

Also, rather than an axis intercept, there is a displacement of the line relative to both the y-axis 

and the   -axis. Meaning there is a real displacement and an imaginary displacement.  So the 

complete equation is: 

 

                      

                                        

 

The real displacement moves the line up and down.  The imaginary displacement moves the 

line forward and backward. 

 

5.21 Example: 

What is the equation of the line that goes through the two points:  (3,2,i)  and (1,-3,6i) ? 

The first step is to calculate the two slopes, real and imaginary: 

   

       
                 

     
 

       
             

   
 

       
     

  
 

   
 

 
            

   

 
  

(The two slopes, of course, need not be equal. This example just turned out that way.)  

 

The second step is to insert the slopes along with either point into the basic equation to solve 

for the displacements.  Using the first point: 
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The third step, if needed, is to insert the slopes and the second point into the basic equation to 

verify that the two points give the same  displacements. 

 

                      

                        

                 

 

And so, the completed equation for the line with the two specified points is:  

 

                       

                          

 

When this line is projected to the front view (real only slope) it appears as: 
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When the line is projected to the top view (imaginary only slope) it appears as: 

 
The 3Di graph of the line along with the two specified points is as follows: 

 
rotate complex slope line 
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5.3 Inverse Imaginary Slope 

 

In addition to real slope in the FRP and imaginary slope in the TIP, denoted by: 

       
                 

     
 

   
       

     
            

         

     
 

 

we can define an ‘inverse imaginary slope’: 

 

                             

 and denote it by: 

 

     
     

       
 

 

Real slope shows up in the front view and imaginary slope shows up in the top view. Inverse 

imaginary slope shows up in the right side view. 

 

One way that this can be visualized is by standing at the end of a runway while the aircraft takes 

off going away from us. In this front view the aircraft appears to rise vertically. This vertical 

ascent appearance occurs in both front and top views.  And, this demonstrates that a line with 

inverse imaginary slope, so defined, appears as a vertical line in both the FRP and the TIP.      

Intuitively, we can carry these visualizations further to formally observe that: 

 

(4) A line with real only slope shows up as a vertical line in the side view, and a line with 

zero slope in the top view.  

(5) A line with imaginary only slope shows up as a line with zero slope in front view, and a 

line with zero slope in side view.  

(6) And, as stated above, a line with inverse imaginary only slope shows up as a vertical line 

in both front and top views. 

 

Inverse imaginary slope may appear somewhat counter intuitive in that the glide path of the 

above mentioned aircraft would have a positive inverse imaginary slope  on landing/approach, 

and a negative inverse imaginary slope on take-off/departure.  

 

Continuing the example with the two previously specified points, (3,2,i)  and (1,-3,6i), the 

inverse imaginary slope can be calculated as: 
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This can be viewed, in the above last animation, as the blue line comes around to show the RSIP 

view; and it can be verified by projecting the line (blue) to the RSIP as follows.  In the side view 

the axes are: 

                             

 

and the two displacements, when combined, project to a y-intercept that is different.  By 

inserting the two points into the equation: 

 

              

 

the y-intercept is calculated as: 

 

                        

                     

                          

                       

 

So the equation of this line is: 
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And when this line is projected to the right side view it appears as: 

 
 

 

The three different two dimensional graphs are generated by the following equations:  
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5.4 Table of Slopes in 3Di 

 

Additionally, the three 2-dimensional slopes can also be visualized as the three planar rotations 

of a spacecraft. I.e., pitch, yaw and roll which is indicated in the fourth column of the table: 

slope notation plane slope 

rotation 

action 2D relationships 

complex          pitch + 

yaw 

rise +  glide 

over run 

Slope in all 

three, FRP, TIP, 

RSIP 

real only    FRP pitch rise over run Horizontal in TIP, 

vertical in RSIP 

imaginary 

only 

    TIP yaw glide over run Horizontal in 

both FRP and 

RSIP 

inverse 

imaginary 

     RSIP roll rise over glide Vertical line in 

both FRP and TIP 
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5.5 Transformation of Two Dimensional Slope 

 

If we specify a point at (1, 1/2 , 0i): 

 
and then draw a line through this point with no displacement, meaning a line through this point 

and the origin: 

 
The equation of this line is generated by: 
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With no displacement, zero imaginary slope and an arbitrary 1/2 real slope, the equation 

reduces to: 

  
 

 
 

 

which is a line with real-only slope located on the front, real plane (FRP). 

 

If we were to rotate this line about the x-axis using a ‘rotator coefficient’ ia (see sections: 3.25, 

3.7, 9.38 on this rotator in the eBook), the effect is to alter the line’s two dimensional real and 

imaginary slopes.  Meaning: 

 

          

      

     
         

 
 

   

 
 

 

So as a moves through its interval, the line is rotated about the x-axis: 

 
line rotation about the x-axis 

 

As the line rotates, its projected two dimensional slope transforms from real-only to complex to 

imaginary only to complex.  And then to negative real-only to complex to negative imaginary-

only to complex and then back again to positive real-only.  So if we look at various values of a: 

For a = 0 the slope is positive real only: 
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On the right, the black line is the two dimensional real slope in the front view and the red line is 

the two dimensional imaginary slope in the top view: 

 
 

For a = .6 the slope is complex: 

 

     
                

 
  

 
 

For a = 1 the slope is positive imaginary only: 

 

   
 

 
  

 
 



A New Coordinate System for Complex Numbers 502 

greg ehmka, 2013 
 

For a = 1.6 the slope is complex with negative real and positive imaginary: 

 

     
                 

 
  

 
 

For a = 2.6 the slope is complex with negative real and negative imaginary: 
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For a = 3 the slope is negative imaginary only: 

 

   
  

 
  

 
 

As stated before, if a displacement is added to the line, a real displacement moves the line up 

and down and an imaginary displacement moves the line forward or backward.  Then the line 

will rotate at the displacement point about a line (green line below) through that point and 

parallel to the x-axis.  For example, adding a displacement and using the above line with a = 3: 

 

     
  

 
      

  

 
 

Just as this line, which is rotated about the x-axis, transitions between real and imaginary slope, 

if the line is rotated about the iz-axis the slope will transition between real and inverse 

imaginary slopes.  Similarly if the line is rotated about the y-axis the line will transition between 

imaginary and inverse imaginary slopes.  
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5.6  Polynomial Space Trajectories, we made the suggestion that polynomials in space with 

complex coefficients can be interpreted as three-dimensional trajectories along which objects 

can travel – meaning that, essentially, complex coefficients are slopes.   

 

A simple line with complex slope and a complex displacement:  

 

                       

 

with the same two points from section 5.0  Complex Slope, gives the equation: 
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which generates the line in space and the two points: 

 
 

And, adding an   term: 

 

                             

 

generates a space parabola: 

 
 

Virtually any combination of slopes (complex coefficients) and polynomial terms can be 

combined to form a trajectory. Placing this particular slope on a cubic term, and adding an 

arbitrary slope on a linear term with no displacement, for example, gives  the space curve 

below in blue: 
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Or, adding back in the displacement, and raising the degree: 

 

                                    

 

 
 

we then designate this as the trajectory,  : 
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And then, the spatial dimension    which gives the line graph, needs to be replaced by an 

animation dimension; and, in this case, we’ll say that it is time,  :  

 

                                 

 

Rather than representing the spatial path with  , using an animation variable,   allows the 

trajectory function to represent the object’s motion, i.e., the various velocities and 

accelerations which will move an object along that spatial path. 

 

The replacement of x by t doesn’t change the essential nature of the equation.  That being, a 

location graph.  Using the spatial coordinate x gives a line graph representing all possible 

locations.  Using the time coordinate t gives a video of successive unique locations at time = t.   

 

The next step is to provide an object that will travel this path. As we indicated in section  

5.1 An Intuitive Model 
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Complex Slope 

Using the animation above, visualize an aircraft taxiing down the runway prior to take-off. Our 

view is off to the side, with the taxiing aircraft moving from left to right. And, let’s say that 

exactly to the right is a heading of zero. Exactly in front of us, the aircraft reaches take-off speed 

and rotates to begin its climb. This is the violet ball at the origin. The violet line is the aircraft’s 

climb while maintaining the same heading. This is real slope and zero imaginary slope, 

sometimes referred to as ‘rise over run.’ 

 

Next, at the black ball, the aircraft reaches cruising altitude and levels off while maintaining the 

same heading. And, the black line shows its flight path with zero real slope and zero imaginary 

slope. 

 

Next, at the red ball, the aircraft executes a 45-degree turn to the left while maintaining 

altitude. The red line shows its flight path with imaginary slope and zero real slope. This could 

be referred to as ‘glide over run.’ 
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And finally, while maintaining that heading, at the blue ball, it begins another climb. The blue 

line then shows both real slope, which is the climb, and imaginary slope, which is the heading 

other than zero. So, in flight path terms, complex slope is the sum of climb/descent plus 

heading. 

 

 

5.2 Real, Imaginary and Complex Slope 

 

Removing the idea of an aircraft, since it has a direction and motion, and just focusing on the 

line segments, real only slope of a line in three dimensions is: 
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while imaginary only slope is: 

 
 

Real only slope appears in the front view (FRP) and imaginary only slope appears in the top view 

(TIP). 

 

Real only slope has the usual slope-intercept equation of a line: 

 

                              

 

and imaginary only slope would then have a corresponding slope-intercept equation of a line: 

 

                                     

 

In graphing terms, real only slope is rise over run and imaginary slope would be glide over run. 

Either or both can be positive, negative or zero.  Complex slope combines the two and is ‘rise 

plus glide over run’.  The two equations can be combined to give: 

 

                       

 

Algebraically, complex slope extends standard slope by adding in the imaginary number for the 

glide.  Since there are two slopes: 
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And the calculation of complex slope becomes: 

 

       
                 

     
 

 

Also, rather than an axis intercept, there is a displacement of the line relative to both the y-axis 

and the   -axis. Meaning there is a real displacement and an imaginary displacement.  So the 

complete equation is: 

 

                      

                                        

 

The real displacement moves the line up and down.  The imaginary displacement moves the 

line forward and backward. 

 

5.21 Example: 

What is the equation of the line that goes through the two points:  (3,2,i)  and (1,-3,6i) ? 

The first step is to calculate the two slopes, real and imaginary: 

   

       
                 

     
 

       
             

   
 

       
     

  
 

   
 

 
            

   

 
  

(The two slopes, of course, need not be equal. This example just turned out that way.)  

 

The second step is to insert the slopes along with either point into the basic equation to solve 

for the displacements.  Using the first point: 
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The third step, if needed, is to insert the slopes and the second point into the basic equation to 

verify that the two points give the same  displacements. 

 

                      

                        

                 

 

And so, the completed equation for the line with the two specified points is:  

 

                       

                          

 

When this line is projected to the front view (real only slope) it appears as: 
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When the line is projected to the top view (imaginary only slope) it appears as: 

 
The 3Di graph of the line along with the two specified points is as follows: 

 
rotate complex slope line 

 

 

 

  



A New Coordinate System for Complex Numbers 514 

greg ehmka, 2013 
 

5.3 Inverse Imaginary Slope 

 

In addition to real slope in the FRP and imaginary slope in the TIP, denoted by: 

       
                 

     
 

   
       

     
            

         

     
 

 

we can define an ‘inverse imaginary slope’: 

 

                             

 and denote it by: 

 

     
     

       
 

 

Real slope shows up in the front view and imaginary slope shows up in the top view. Inverse 

imaginary slope shows up in the right side view. 

 

One way that this can be visualized is by standing at the end of a runway while the aircraft takes 

off going away from us. In this front view the aircraft appears to rise vertically. This vertical 

ascent appearance occurs in both front and top views.  And, this demonstrates that a line with 

inverse imaginary slope, so defined, appears as a vertical line in both the FRP and the TIP.      

Intuitively, we can carry these visualizations further to formally observe that: 

 

(7) A line with real only slope shows up as a vertical line in the side view, and a line with 

zero slope in the top view.  

(8) A line with imaginary only slope shows up as a line with zero slope in front view, and a 

line with zero slope in side view.  

(9) And, as stated above, a line with inverse imaginary only slope shows up as a vertical line 

in both front and top views. 

 

Inverse imaginary slope may appear somewhat counter intuitive in that the glide path of the 

above mentioned aircraft would have a positive inverse imaginary slope  on landing/approach, 

and a negative inverse imaginary slope on take-off/departure.  

 

Continuing the example with the two previously specified points, (3,2,i)  and (1,-3,6i), the 

inverse imaginary slope can be calculated as: 
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This can be viewed, in the above last animation, as the blue line comes around to show the RSIP 

view; and it can be verified by projecting the line (blue) to the RSIP as follows.  In the side view 

the axes are: 

                             

 

and the two displacements, when combined, project to a y-intercept that is different.  By 

inserting the two points into the equation: 

 

              

 

the y-intercept is calculated as: 

 

                        

                     

                          

                       

 

So the equation of this line is: 
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And when this line is projected to the right side view it appears as: 

 
 

 

The three different two dimensional graphs are generated by the following equations:  
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5.4 Table of Slopes in 3Di 

 

Additionally, the three 2-dimensional slopes can also be visualized as the three planar rotations 

of a spacecraft. I.e., pitch, yaw and roll which is indicated in the fourth column of the table: 

slope notation plane slope 

rotation 

action 2D relationships 

complex          pitch + 

yaw 

rise +  glide 

over run 

Slope in all 

three, FRP, TIP, 

RSIP 

real only    FRP pitch rise over run Horizontal in TIP, 

vertical in RSIP 

imaginary 

only 

    TIP yaw glide over run Horizontal in 

both FRP and 

RSIP 

inverse 

imaginary 

     RSIP roll rise over glide Vertical line in 

both FRP and TIP 
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5.5 Transformation of Two Dimensional Slope 

 

If we specify a point at (1, 1/2 , 0i): 

 
and then draw a line through this point with no displacement, meaning a line through this point 

and the origin: 

 
The equation of this line is generated by: 
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With no displacement, zero imaginary slope and an arbitrary 1/2 real slope, the equation 

reduces to: 

  
 

 
 

 

which is a line with real-only slope located on the front, real plane (FRP). 

 

If we were to rotate this line about the x-axis using a ‘rotator coefficient’ ia (see sections: 3.25, 

3.7, 9.38 on this rotator in the eBook), the effect is to alter the line’s two dimensional real and 

imaginary slopes.  Meaning: 

 

          

      

     
         

 
 

   

 
 

 

So as a moves through its interval, the line is rotated about the x-axis: 

 
line rotation about the x-axis 

 

As the line rotates, its projected two dimensional slope transforms from real-only to complex to 

imaginary only to complex.  And then to negative real-only to complex to negative imaginary-

only to complex and then back again to positive real-only.  So if we look at various values of a: 

For a = 0 the slope is positive real only: 
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On the right, the black line is the two dimensional real slope in the front view and the red line is 

the two dimensional imaginary slope in the top view: 

 
 

For a = .6 the slope is complex: 

 

     
                

 
  

 
 

For a = 1 the slope is positive imaginary only: 
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For a = 1.6 the slope is complex with negative real and positive imaginary: 

 

     
                 

 
  

 
 

For a = 2.6 the slope is complex with negative real and negative imaginary: 
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For a = 3 the slope is negative imaginary only: 

 

   
  

 
  

 
 

As stated before, if a displacement is added to the line, a real displacement moves the line up 

and down and an imaginary displacement moves the line forward or backward.  Then the line 

will rotate at the displacement point about a line (green line below) through that point and 

parallel to the x-axis.  For example, adding a displacement and using the above line with a = 3: 

 

     
  

 
      

  

 
 

Just as this line, which is rotated about the x-axis, transitions between real and imaginary slope, 

if the line is rotated about the iz-axis the slope will transition between real and inverse 

imaginary slopes.  Similarly if the line is rotated about the y-axis the line will transition between 

imaginary and inverse imaginary slopes.  
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5.6  Polynomial Space Trajectories, we can now use a closed surface object from section 12.2  

Closed Surfaces. And, in this case, we’ll take the triangular lozenge from section 12.22.  So, the 

geometry function,    will be: 

 

                     
 
  

                        

              

 

And, the closed surface graph of the object is: 

 

    

       

 
 

The motion of this object along the trajectory   is then just a simple sum of the geometry and 

the trajectory functions. Along the   axis is the sum of the horizontal spatial extension of the 

object, plus the animation variable,  .  And so: 

 

      

         

 

The time interval is        : 
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Animation 74 ‘Triangular Lozenge in Space Trajectory Travel’ 

 And, overlaying the spatial path: 

 
 

And here is an exotic trajectory with fractional exponents and a circular coefficient on the 

second term: 

                                         

http://youtu.be/ovsaocyDm5E
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Animation 75 ‘Triangular Lozenge in Space Trajectory Travel 2’ 

 

 

15.2  Objects in Orbits 

 

15.21  A Two Dimensional Solar System 

 

For closed surfaces in orbit, first, each orbiting body will have its own geometry function. For 

example, with four bodies, a ‘Sun,’ a ‘Planet,’ a ‘Moon,’ and a ‘Satellite’ orbiting the ‘Moon,’ the  

four geometry functions will be, in this case, spheres of varying sizes:  

 

            
 
  

        
 

 
 
 

  
 

 
 
 

 

 
 

 

        
 

 
 
 

  
 

 
 
 

 

 
 

 

http://youtu.be/RickEsHUjjc
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Next, the four trajectory functions. In this case the ‘Sun’ trajectory will be a reciprocal sum to 

allow for elliptical orbits, and the other three will be simple circular orbits. The animation 

variable will be time,  : 

 

                    

 

The coefficient   allows for differing eccentricities in the elliptical orbit; and the constant   

displaces the ‘Sun’ from the fixed center, the origin, around which it will be orbiting. 

 

         

         

         

 

The coefficients       are the radii, or displacements, away from each preceding body; and the 

exponential coefficients       are the respective frequencies of revolution around each 

preceding body. 

 

The equations of motion are then the sums of each geometry function plus the orbiting 

trajectory functions from each preceding body plus adding its own orbiting trajectory to the 

preceding ones. 

 

                           

 

                                 

 

                                  

 

                                          

 

For the displacements (radii) and frequencies: 
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The different sizes of the spheres are graphed on the horizontal axis for motion in a vertical 

plane, and on the vertical axis for motion in the horizontal plane. In other words, the spatial 

extension of the sphere has two components – the real part of the geometry function and the 

imaginary part of the geometry function. These two parts are arranged on the three axes in 

such a way as to be both parallel and perpendicular to the plane of motion, so they move as 

desired. 

 

As confusing as that may sound, it’s fairly simple and, parametrically, looks like this: 

 

In the case of the planet: 

 

                

  
 

 
                 

 

 

And, there is one of these sets of equations for each moving body. 

 

So, for motion in the horizontal plane,         are exchanging places, and so: 
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Interval       : 

 
Animation 76 ‘2D Solar System’ 

 

 

And, the spatial orbital paths look like this: 

 

http://youtu.be/M48k0lwOHq0
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Or, with a different solar eccentricity and some frequency changes: 

 

                 

 

 
Animation 77 ‘2D Solar System 2’ 

 

 

15.22  Bodily Rotation 

 

A rotation can be added to each of the orbiting bodies by placing a ‘spin coefficient’,      , on 

the geometry function with,    the frequency of revolution.   

 

Adding rotation to the first three bodies: 

 

                 
 
        

http://youtu.be/avzurkPwr-g
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And then, to easier view the rotation, the interval for   is decreased to        , so the 

sphere surfaces are in cutaway: 

 
Animation 78 ‘Orbits and Bodily Rotations’ 

 

 

15.23  A Three Dimensional Solar System 

 

Any number of bodies may be added to the system by specifying a geometry and a trajectory 

function for it, and summing them with the trajectories of the bodies around which it orbits;  

and then, for the third dimension, vertical, in parametric form, adding its motion to the vertical 

axis.  E.g., for an additional, spherical ‘Moon’ (blue) around the planet, with an elliptical orbit at 

an angle to the ‘planet’s’ orbit: 

 

http://youtu.be/VP4EsDKPxMg
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3D orbit in blue. Others in the plane: 

 
Animation 79 ‘3D Solar System’ 

 

 

15.24  A Helical Solar System 

 

The solar system as a whole need not only orbit a fixed point, but can follow any trajectory as in 

section 15.1  Objects in Polynomial Space Trajectories. If the Sun moves through space in a 

more or less discernible straight line, as our own Sun does, then the planets and other orbiting 

bodies will form helical paths.   

 

http://youtu.be/jjR9bP07O6A
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Changing the Sun’s trajectory to   will allow a simple, horizontal linear movement. And then, for 

easier viewing, adding the animation variable   to the vertical axis, which previously had no 

motion for the two dimensional system:   

 

     

                    
 

 
 
 

 
 
 

  
  

 

 
Animation 80 ‘Helical Solar System’ 

 

  

http://youtu.be/9RS0e3FSgGY
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15.3  Circular Waves in Motion 

15.31  Spin Coefficient 

 

For circular waves, the spin coefficient (section 15.22  Bodily Rotation) will generate two 

different types of rotation depending on the wave.  

 

For the circular helicoid, section 14.2  Circular Helicoid: 

  

           

 

         

 

      

 

                      

 

                      

       

                       
 

 

adding the spin coefficient     to the geometry function: 
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has the effect of rotating the circular helicoid around the vertical axis: 

(The software resolution isn’t quite high enough, so the amplitudes are a little choppy.) 

 
Animation 81 ‘Rotating Circular Helicoid’ 

 

 

  

http://youtu.be/W2VW3XcsXo0
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And, for the circular ‘transverse wave,’ section 14.4  Circular ‘Transverse Wave’ Surfaces: 

 

                      

       

                       
 

 

        
 
        

 

 

 

          

 

       

 

               

 

adding the spin coefficient to the geometry function: 

 

            
 
       

 

  

  

 

has the effect of rotating the amplitudes perpendicular to the circular orbit: 

 
Animation 82 ‘Rotating Transverse Wave’ 

 

http://youtu.be/839jhv3QYcA


A New Coordinate System for Complex Numbers 536 

greg ehmka, 2013 
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15.32  Reciprocal Spin 

 

Making the spin coefficient a reciprocal for the circular helicoid: 

 

                 

 

results in rotating the circular helicoid in the opposite direction around the vertical axis: 

 
Animation 83 ‘Reciprocal Rotating Circular Helicoid’ 

 

 

 

  

http://youtu.be/WotFNgK5GPE
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And, making the spin coefficient a reciprocal for the transverse wave: 

 

             
 
       

 

  

  

 

results in the amplitudes rotating perpendicular to the circular orbit in the opposite direction: 

 
Animation 84 ‘Reciprocal Rotating Transverse Wave’ 

  

http://youtu.be/i53NGxizdGQ
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15.33  Standing Waves 

 

Adding the rotation and the reciprocal rotations together generates two different forms of 

standing waves: 

 

            
 
       

 

  

             
 
       

 

  

              

 

 
Animation 85 ‘Circular Transverse Standing Wave’ 

 

 

  

http://youtu.be/i6y8TNO2MQ4
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And: 

 

                                          

 

 
Animation 86 ‘Circular Helicoid Standing Wave’ 

 

  

http://youtu.be/U35HgKttOtE


A New Coordinate System for Complex Numbers 541 

greg ehmka, 2013 
 

Concluding Personal Comments 
 

The mathematical concept of Third Dimension Imaginary is probably a good example of what 

Victor Hugo referred to as “an idea whose time has come.” Very likely there are other 

individuals researching the same concept who will add much to the basic ideas. 

 

If one accepts the concept of observable and embedded variables there is much that can be 

expanded upon. For example, in section 14.0 a surface is being input and, parametrically, a 

surface is being output with: 

 

  5Dii   

         

         

          
 

 

Using quaternions, theoretically, a ‘volume input’ or a ‘density input’ could be made 

parametrically with: 

 

  7Diijk   

               

               

                
 

 

If one considers Octonions, there would be eight dimensions/variables as input and three 

dimensions/variables as output for a total of eleven. 

 

The point being that if the results so far, and their potential expansions are successfully inspired 

and realized, an “idea whose time has come,” would be an apt description. 

 

Finally, to offer one of those classically ironic anecdotes: I actually failed calculus the first two 

times that I took it in college!  And, I went on to take it three more times, for a total of five over 

the next twenty years, before I felt like I understood it. 

 

The initial inspiration for Third Dimension Imaginary came somewhere in the middle of that 

time period. And, when I found the orthogonal circle in between the vertices of the standard 

hyperbola, I knew it was correct or, at the very least, that a valid alternative coordinate system 

could be based on it.   
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The point of that is just as I said in the dedication; It took me nearly thirty years to write this.  

Don’t give up on what you love!   

 

Sincerely, 

 

greg ehmka 
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